These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 35793554)

  • 1. High-Throughput Aminoacyl-tRNA Synthetase Engineering for Genetic Code Expansion in Yeast.
    Stieglitz JT; Van Deventer JA
    ACS Synth Biol; 2022 Jul; 11(7):2284-2299. PubMed ID: 35793554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Robust and Quantitative Reporter System To Evaluate Noncanonical Amino Acid Incorporation in Yeast.
    Stieglitz JT; Kehoe HP; Lei M; Van Deventer JA
    ACS Synth Biol; 2018 Sep; 7(9):2256-2269. PubMed ID: 30139255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance analysis of orthogonal pairs designed for an expanded eukaryotic genetic code.
    Nehring S; Budisa N; Wiltschi B
    PLoS One; 2012; 7(4):e31992. PubMed ID: 22493661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-Wide Screen for Enhanced Noncanonical Amino Acid Incorporation in Yeast.
    Zackin MT; Stieglitz JT; Van Deventer JA
    ACS Synth Biol; 2022 Nov; 11(11):3669-3680. PubMed ID: 36346914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploration of
    Stieglitz JT; Lahiri P; Stout MI; Van Deventer JA
    ACS Synth Biol; 2022 May; 11(5):1824-1834. PubMed ID: 35417129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadening the Toolkit for Quantitatively Evaluating Noncanonical Amino Acid Incorporation in Yeast.
    Stieglitz JT; Potts KA; Van Deventer JA
    ACS Synth Biol; 2021 Nov; 10(11):3094-3104. PubMed ID: 34730946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts.
    Wang L
    Acc Chem Res; 2017 Nov; 50(11):2767-2775. PubMed ID: 28984438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-Tier Screening Platform for Directed Evolution of Aminoacyl-tRNA Synthetases with Enhanced Stop Codon Suppression Efficiency.
    Owens AE; Grasso KT; Ziegler CA; Fasan R
    Chembiochem; 2017 Jun; 18(12):1109-1116. PubMed ID: 28383180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed Evolution of the
    Schwark DG; Schmitt MA; Fisk JD
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Proteins Containing Noncanonical Amino Acids on the Yeast Surface.
    Hershman RL; Rezhdo A; Stieglitz JT; Van Deventer JA
    Methods Mol Biol; 2022; 2491():491-559. PubMed ID: 35482204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporating, Quantifying, and Leveraging Noncanonical Amino Acids in Yeast.
    Stieglitz JT; Van Deventer JA
    Methods Mol Biol; 2022; 2394():377-432. PubMed ID: 35094338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual stop codon suppression in mammalian cells with genomically integrated genetic code expansion machinery.
    Meineke B; Heimgärtner J; Caridha R; Block MF; Kimler KJ; Pires MF; Landreh M; Elsässer SJ
    Cell Rep Methods; 2023 Nov; 3(11):100626. PubMed ID: 37935196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Not-so-popular" orthogonal pairs in genetic code expansion.
    Andrews J; Gan Q; Fan C
    Protein Sci; 2023 Feb; 32(2):e4559. PubMed ID: 36585833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering aminoacyl-tRNA synthetases for use in synthetic biology.
    Krahn N; Tharp JM; Crnković A; Söll D
    Enzymes; 2020; 48():351-395. PubMed ID: 33837709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Evolved Methanomethylophilus alvus Pyrrolysyl-tRNA Synthetase/tRNA Pair Is Highly Active and Orthogonal in Mammalian Cells.
    Beránek V; Willis JCW; Chin JW
    Biochemistry; 2019 Feb; 58(5):387-390. PubMed ID: 30260626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolved sequence contexts for highly efficient amber suppression with noncanonical amino acids.
    Pott M; Schmidt MJ; Summerer D
    ACS Chem Biol; 2014 Dec; 9(12):2815-22. PubMed ID: 25299570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic Code Expansion in Mammalian Cells Through Quadruplet Codon Decoding.
    Chen Y; Gao T; He X; Niu W; Guo J
    Methods Mol Biol; 2023; 2676():181-190. PubMed ID: 37277633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineered Aminoacyl-tRNA Synthetases with Improved Selectivity toward Noncanonical Amino Acids.
    Kwok HS; Vargas-Rodriguez O; Melnikov SV; Söll D
    ACS Chem Biol; 2019 Apr; 14(4):603-612. PubMed ID: 30933556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The central role of tRNA in genetic code expansion.
    Reynolds NM; Vargas-Rodriguez O; Söll D; Crnković A
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt B):3001-3008. PubMed ID: 28323071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome.
    Neumann H; Wang K; Davis L; Garcia-Alai M; Chin JW
    Nature; 2010 Mar; 464(7287):441-4. PubMed ID: 20154731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.