These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35793948)

  • 21. Ocular biometry, refraction and time spent outdoors during daylight in Irish schoolchildren.
    Harrington SC; O'Dwyer V
    Clin Exp Optom; 2020 Mar; 103(2):167-176. PubMed ID: 31187504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overcorrecting minus lens therapy in patients with intermittent exotropia: Should it be the first therapeutic choice?
    Bayramlar H; Gurturk AY; Sari U; Karadag R
    Int Ophthalmol; 2017 Apr; 37(2):385-390. PubMed ID: 27259481
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Corneal curvature-associated
    Yuan XL; Zhang R; Zheng Y; Sun L; Wang G; Chen S; Xu Y; Chen SL; Qiu K; Ng TK
    Ophthalmic Genet; 2021 Aug; 42(4):446-457. PubMed ID: 33979260
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Does overcorrecting minus lens therapy for intermittent exotropia cause myopia?
    Kushner BJ
    Arch Ophthalmol; 1999 May; 117(5):638-42. PubMed ID: 10326961
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the ocular refractive components: the Reykjavik Eye Study.
    Olsen T; Arnarsson A; Sasaki H; Sasaki K; Jonasson F
    Acta Ophthalmol Scand; 2007 Jun; 85(4):361-6. PubMed ID: 17286626
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Refractive error changes in children with intermittent exotropia under overminus lens therapy.
    Paula JS; Ibrahim FM; Martins MC; Bicas HE; Velasco e Cruz AA
    Arq Bras Oftalmol; 2009; 72(6):751-4. PubMed ID: 20098893
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Association of refraction and ocular biometry in highly myopic eyes.
    Chen Y; Wang D; Chen L; Yan W; He M
    Clin Exp Optom; 2021 Jul; 104(5):589-594. PubMed ID: 33689619
    [No Abstract]   [Full Text] [Related]  

  • 28. Differential Effects on Ocular Biometrics by 0.05%, 0.025%, and 0.01% Atropine: Low-Concentration Atropine for Myopia Progression Study.
    Li FF; Kam KW; Zhang Y; Tang SM; Young AL; Chen LJ; Tham CC; Pang CP; Yam JC
    Ophthalmology; 2020 Dec; 127(12):1603-1611. PubMed ID: 32525048
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photoscreener results with and without cycloplegia and their reliability according to biometric parameters.
    Guler Alis M; Alis A
    J Fr Ophtalmol; 2022 Jan; 45(1):65-73. PubMed ID: 34924211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Longitudinal changes in corneal curvature and its relationship to axial length in the Correction of Myopia Evaluation Trial (COMET) cohort.
    Scheiman M; Gwiazda J; Zhang Q; Deng L; Fern K; Manny RE; Weissberg E; Hyman L;
    J Optom; 2016; 9(1):13-21. PubMed ID: 26564446
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanisms of myopia in Cohen syndrome mapped to chromosome 8q22.
    Summanen P; Kivitie-Kallio S; Norio R; Raitta C; Kivelä T
    Invest Ophthalmol Vis Sci; 2002 May; 43(5):1686-93. PubMed ID: 11980891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relation of anthropometric measurements to ocular biometric changes and refractive error in children with thalassemia.
    Elkitkat RS; El-Shazly AA; Ebeid WM; Deghedy MR
    Eur J Ophthalmol; 2018 Mar; 28(2):139-143. PubMed ID: 27834467
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of body stature on refraction and ocular biometry in Chinese young adults: The Anyang University Students Eye Study.
    Wei S; Sun Y; Li SM; Hu JP; Cao K; An W; Guo JY; Li H; Wang N
    Clin Exp Optom; 2021 Mar; 104(2):201-206. PubMed ID: 32869355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Refractive, biometric and topographic changes among Portuguese university science students: a 3-year longitudinal study.
    Jorge J; Almeida JB; Parafita MA
    Ophthalmic Physiol Opt; 2007 May; 27(3):287-94. PubMed ID: 17470242
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Change in subfoveal choroidal thickness secondary to orthokeratology and its cessation: a predictor for the change in axial length.
    Li Z; Hu Y; Cui D; Long W; He M; Yang X
    Acta Ophthalmol; 2019 May; 97(3):e454-e459. PubMed ID: 30288939
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relatively anterior lens position in primary angle-closure glaucoma eyes with long axial length.
    Chen J; Zhang Y; Huang Y; Ng TK; Huang C
    Indian J Ophthalmol; 2023 May; 71(5):1941-1947. PubMed ID: 37203062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The development of myopia among children with intermittent exotropia.
    Ekdawi NS; Nusz KJ; Diehl NN; Mohney BG
    Am J Ophthalmol; 2010 Mar; 149(3):503-7. PubMed ID: 20172074
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of Changes in Refraction and Biometry of Atropine- and Placebo-Treated Eyes.
    Kumaran A; Htoon HM; Tan D; Chia A
    Invest Ophthalmol Vis Sci; 2015 Aug; 56(9):5650-5. PubMed ID: 26313301
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Distinct Biometric Features of High Myopia Compared to Moderate Myopia.
    Chung HJ; Park CK
    Curr Eye Res; 2016 Dec; 41(12):1580-1583. PubMed ID: 27336460
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of reading and near-work on the development of myopia in emmetropic boys: a prospective, controlled, three-year follow-up study.
    Hepsen IF; Evereklioglu C; Bayramlar H
    Vision Res; 2001 Sep; 41(19):2511-20. PubMed ID: 11483181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.