These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35794110)

  • 1. Deep learning from phylogenies to uncover the epidemiological dynamics of outbreaks.
    Voznica J; Zhukova A; Boskova V; Saulnier E; Lemoine F; Moslonka-Lefebvre M; Gascuel O
    Nat Commun; 2022 Jul; 13(1):3896. PubMed ID: 35794110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning and Likelihood Approaches for Viral Phylogeography Converge on the Same Answers Whether the Inference Model Is Right or Wrong.
    Thompson A; Liebeskind BJ; Scully EJ; Landis MJ
    Syst Biol; 2024 May; 73(1):183-206. PubMed ID: 38189575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring epidemiological parameters from phylogenies using regression-ABC: A comparative study.
    Saulnier E; Gascuel O; Alizon S
    PLoS Comput Biol; 2017 Mar; 13(3):e1005416. PubMed ID: 28263987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning from Phylogenies for Diversification Analyses.
    Lambert S; Voznica J; Morlon H
    Syst Biol; 2023 Dec; 72(6):1262-1279. PubMed ID: 37556735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepDynaForecast: Phylogenetic-informed graph deep learning for epidemic transmission dynamic prediction.
    Sun C; Fang R; Salemi M; Prosperi M; Rife Magalis B
    PLoS Comput Biol; 2024 Apr; 20(4):e1011351. PubMed ID: 38598563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DLBI: deep learning guided Bayesian inference for structure reconstruction of super-resolution fluorescence microscopy.
    Li Y; Xu F; Zhang F; Xu P; Zhang M; Fan M; Li L; Gao X; Han R
    Bioinformatics; 2018 Jul; 34(13):i284-i294. PubMed ID: 29950012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fast likelihood approach for estimation of large phylogenies from continuous trait data.
    Peng J; Rajeevan H; Kubatko L; RoyChoudhury A
    Mol Phylogenet Evol; 2021 Aug; 161():107142. PubMed ID: 33713799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring epidemiological dynamics with Bayesian coalescent inference: the merits of deterministic and stochastic models.
    Popinga A; Vaughan T; Stadler T; Drummond AJ
    Genetics; 2015 Feb; 199(2):595-607. PubMed ID: 25527289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying Transmission Heterogeneity Using Both Pathogen Phylogenies and Incidence Time Series.
    Li LM; Grassly NC; Fraser C
    Mol Biol Evol; 2017 Nov; 34(11):2982-2995. PubMed ID: 28981709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variational Bayesian phylogenies through matrix representation of tree space.
    Bouckaert RR
    PeerJ; 2024; 12():e17276. PubMed ID: 38699195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian phylodynamic inference with complex models.
    Volz EM; Siveroni I
    PLoS Comput Biol; 2018 Nov; 14(11):e1006546. PubMed ID: 30422979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FastRFS: fast and accurate Robinson-Foulds Supertrees using constrained exact optimization.
    Vachaspati P; Warnow T
    Bioinformatics; 2017 Mar; 33(5):631-639. PubMed ID: 27663499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data-specific substitution models improve protein-based phylogenetics.
    Brazão JM; Foster PG; Cox CJ
    PeerJ; 2023; 11():e15716. PubMed ID: 37576497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylodynamics on local sexual contact networks.
    Rasmussen DA; Kouyos R; Günthard HF; Stadler T
    PLoS Comput Biol; 2017 Mar; 13(3):e1005448. PubMed ID: 28350852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian and maximum likelihood phylogenetic analyses of protein sequence data under relative branch-length differences and model violation.
    Mar JC; Harlow TJ; Ragan MA
    BMC Evol Biol; 2005 Jan; 5():8. PubMed ID: 15676079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inference of Transmission Network Structure from HIV Phylogenetic Trees.
    Giardina F; Romero-Severson EO; Albert J; Britton T; Leitner T
    PLoS Comput Biol; 2017 Jan; 13(1):e1005316. PubMed ID: 28085876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computationally tractable birth-death model that combines phylogenetic and epidemiological data.
    Zarebski AE; du Plessis L; Parag KV; Pybus OG
    PLoS Comput Biol; 2022 Feb; 18(2):e1009805. PubMed ID: 35148311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient Bayesian inference framework for coalescent-based nonparametric phylodynamics.
    Lan S; Palacios JA; Karcher M; Minin VN; Shahbaba B
    Bioinformatics; 2015 Oct; 31(20):3282-9. PubMed ID: 26093147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An approximate Bayesian approach for estimation of the instantaneous reproduction number under misreported epidemic data.
    Gressani O; Faes C; Hens N
    Biom J; 2023 Aug; 65(6):e2200024. PubMed ID: 36639234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Branch length estimation and divergence dating: estimates of error in Bayesian and maximum likelihood frameworks.
    Schwartz RS; Mueller RL
    BMC Evol Biol; 2010 Jan; 10():5. PubMed ID: 20064267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.