These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35794177)

  • 1. Enhancing wind direction prediction of South Africa wind energy hotspots with Bayesian mixture modeling.
    Rad NN; Bekker A; Arashi M
    Sci Rep; 2022 Jul; 12(1):11442. PubMed ID: 35794177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wind energy potential assessment based on wind speed, its direction and power data.
    Wang Z; Liu W
    Sci Rep; 2021 Aug; 11(1):16879. PubMed ID: 34413418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating average wind speed in Thailand using confidence intervals for common mean of several Weibull distributions.
    La-Ongkaew M; Niwitpong SA; Niwitpong S
    PeerJ; 2023; 11():e15513. PubMed ID: 37366422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid prediction model for forecasting wind energy resources.
    Zhang Y; Pan G
    Environ Sci Pollut Res Int; 2020 Jun; 27(16):19428-19446. PubMed ID: 32215801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research of a combination system based on fuzzy sets and multi-objective marine predator algorithm for point and interval prediction of wind speed.
    Qian Y; Wang J; Zhang H; Zhang L
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):35781-35807. PubMed ID: 36536200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Collision Risk Model to Predict Avian Fatalities at Wind Facilities: An Example Using Golden Eagles, Aquila chrysaetos.
    New L; Bjerre E; Millsap B; Otto MC; Runge MC
    PLoS One; 2015; 10(7):e0130978. PubMed ID: 26134412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Circular-Linear Probabilistic Model Based on Nonparametric Copula with Applications to Directional Wind Energy Assessment.
    Liu J; Yan Z
    Entropy (Basel); 2024 May; 26(6):. PubMed ID: 38920496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coming Together of Bayesian Inference and Skew Spherical Data.
    Nakhaei Rad N; Bekker A; Arashi M; Ley C
    Front Big Data; 2021; 4():769726. PubMed ID: 35224481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active power control strategy for wind farms based on power prediction errors distribution considering regional data.
    Kader MS; Mahmudh R; Xiaoqing H; Niaz A; Shoukat MU
    PLoS One; 2022; 17(8):e0273257. PubMed ID: 36001548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing probabilistic modelling for wind speed from numerical weather prediction model and observation in the Arctic.
    Chen H; Birkelund Y; Anfinsen SN; Staupe-Delgado R; Yuan F
    Sci Rep; 2021 Apr; 11(1):7613. PubMed ID: 33828197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LSTM input timestep optimization using simulated annealing for wind power predictions.
    Muneeb M
    PLoS One; 2022; 17(10):e0275649. PubMed ID: 36206213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel hybrid wind speed interval prediction model based on mode decomposition and gated recursive neural network.
    Xu H; Chang Y; Zhao Y; Wang F
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):87097-87113. PubMed ID: 35804229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction uncertainty of wind-generated noise spectra from wind speed.
    Zhang Y; Yang Q; Yang K
    J Acoust Soc Am; 2021 Jul; 150(1):215. PubMed ID: 34340516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating wind-turbine-caused bird and bat fatality when zero carcasses are observed.
    Huso MM; Dalthorp D; Dail D; Madsen L
    Ecol Appl; 2015 Jul; 25(5):1213-25. PubMed ID: 26485950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review on Monitoring, Operation and Maintenance of Smart Offshore Wind Farms.
    Kou L; Li Y; Zhang F; Gong X; Hu Y; Yuan Q; Ke W
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-task learning for the prediction of wind power ramp events with deep neural networks.
    Dorado-Moreno M; Navarin N; Gutiérrez PA; Prieto L; Sperduti A; Salcedo-Sanz S; Hervás-Martínez C
    Neural Netw; 2020 Mar; 123():401-411. PubMed ID: 31926464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelet analysis for wind fields estimation.
    Leite GC; Ushizima DM; Medeiros FN; de Lima GG
    Sensors (Basel); 2010; 10(6):5994-6016. PubMed ID: 22219699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of suitability of wind speed probability distribution models: a case study from Tamil Nadu, India.
    Natarajan N; Vasudevan M; Rehman S
    Environ Sci Pollut Res Int; 2022 Dec; 29(57):85855-85868. PubMed ID: 33988843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on wind farm participating in AGC based on wind power variogram characteristics.
    Wang Q; Guo Y; Zhang D; Wang Y; Xu Y; Yu J
    Math Biosci Eng; 2022 Jun; 19(8):8288-8303. PubMed ID: 35801466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy, exergy, economic, environmental, energoeconomic, exergoeconomic, and enviroeconomic (7E) analyses of wind farms: a case study of Pakistan.
    Yousuf MU; Abbasi MA; Kashif M; Umair M
    Environ Sci Pollut Res Int; 2022 Sep; 29(44):67301-67324. PubMed ID: 35524098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.