These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35794270)

  • 1. Nitrogen reduction by the Fe sites of synthetic [Mo
    Ohki Y; Munakata K; Matsuoka Y; Hara R; Kachi M; Uchida K; Tada M; Cramer RE; Sameera WMC; Takayama T; Sakai Y; Kuriyama S; Nishibayashi Y; Tanifuji K
    Nature; 2022 Jul; 607(7917):86-90. PubMed ID: 35794270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of dinitrogen to an iron-sulfur-carbon site.
    Čorić I; Mercado BQ; Bill E; Vinyard DJ; Holland PL
    Nature; 2015 Oct; 526(7571):96-9. PubMed ID: 26416755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into the Iron-Molybdenum Cofactor of Nitrogenase from Synthetic Iron Complexes with Sulfur, Carbon, and Hydride Ligands.
    Čorić I; Holland PL
    J Am Chem Soc; 2016 Jun; 138(23):7200-11. PubMed ID: 27171599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogenase-Relevant Reactivity of a Synthetic Iron-Sulfur-Carbon Site.
    Speelman AL; Čorić I; Van Stappen C; DeBeer S; Mercado BQ; Holland PL
    J Am Chem Soc; 2019 Aug; 141(33):13148-13157. PubMed ID: 31403298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures and reaction dynamics of N
    Dance I
    Dalton Trans; 2021 Dec; 50(48):18212-18237. PubMed ID: 34860237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dinitrogen binding and activation at a molybdenum-iron-sulfur cluster.
    McSkimming A; Suess DLM
    Nat Chem; 2021 Jul; 13(7):666-670. PubMed ID: 34045715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Major Structural Change of the Homocitrate Ligand of Probable Importance for the Nitrogenase Mechanism.
    Siegbahn PEM
    Inorg Chem; 2018 Feb; 57(3):1090-1095. PubMed ID: 29303565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of a homocitrate-free iron-molybdenum cluster on NifEN: implications for the role of homocitrate in nitrogenase assembly.
    Fay AW; Blank MA; Yoshizawa JM; Lee CC; Wiig JA; Hu Y; Hodgson KO; Hedman B; Ribbe MW
    Dalton Trans; 2010 Mar; 39(12):3124-30. PubMed ID: 20221547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial synthetic models of FeMoco with sulfide and carbyne ligands: Effect of interstitial atom in nitrogenase active site.
    Le LNV; Bailey GA; Scott AG; Agapie T
    Proc Natl Acad Sci U S A; 2021 Dec; 118(49):. PubMed ID: 34857636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-Sulfur Compounds in N
    Tanifuji K; Ohki Y
    Chem Rev; 2020 Jun; 120(12):5194-5251. PubMed ID: 32459087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mo-, V-, and Fe-Nitrogenases Use a Universal Eight-Electron Reductive-Elimination Mechanism To Achieve N
    Harris DF; Lukoyanov DA; Kallas H; Trncik C; Yang ZY; Compton P; Kelleher N; Einsle O; Dean DR; Hoffman BM; Seefeldt LC
    Biochemistry; 2019 Jul; 58(30):3293-3301. PubMed ID: 31283201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic dimensions of FeMo-co, the active site of nitrogenase, and its catalytic intermediates.
    Dance I
    Inorg Chem; 2011 Jan; 50(1):178-92. PubMed ID: 21141835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical Synthesis of an Asymmetric Mimic of the Nitrogenase Active Site.
    Tanifuji K; Ohki Y
    Methods Mol Biol; 2019; 1876():229-244. PubMed ID: 30317485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro synthesis of the iron-molybdenum cofactor of nitrogenase from iron, sulfur, molybdenum, and homocitrate using purified proteins.
    Curatti L; Hernandez JA; Igarashi RY; Soboh B; Zhao D; Rubio LM
    Proc Natl Acad Sci U S A; 2007 Nov; 104(45):17626-31. PubMed ID: 17978192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cleaving the n,n triple bond: the transformation of dinitrogen to ammonia by nitrogenases.
    Lee CC; Ribbe MW; Hu Y
    Met Ions Life Sci; 2014; 14():147-76. PubMed ID: 25416394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic conversion of nitrogen to ammonia by an iron model complex.
    Anderson JS; Rittle J; Peters JC
    Nature; 2013 Sep; 501(7465):84-7. PubMed ID: 24005414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 10(6)-fold enhancement in N2-binding affinity of an Fe2(μ-H)2 core upon reduction to a mixed-valence Fe(II)Fe(I) state.
    Rittle J; McCrory CC; Peters JC
    J Am Chem Soc; 2014 Oct; 136(39):13853-62. PubMed ID: 25184795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoding the nitrogenase mechanism: the homologue approach.
    Hu Y; Ribbe MW
    Acc Chem Res; 2010 Mar; 43(3):475-84. PubMed ID: 20030377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding modes for the first coupled electron and proton addition to FeMoco of nitrogenase.
    Lovell T; Li J; Case DA; Noodleman L
    J Am Chem Soc; 2002 May; 124(17):4546-7. PubMed ID: 11971686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing if the interstitial atom, X, of the nitrogenase molybdenum-iron cofactor is N or C: ENDOR, ESEEM, and DFT studies of the S = 3/2 resting state in multiple environments.
    Lukoyanov D; Pelmenschikov V; Maeser N; Laryukhin M; Yang TC; Noodleman L; Dean DR; Case DA; Seefeldt LC; Hoffman BM
    Inorg Chem; 2007 Dec; 46(26):11437-49. PubMed ID: 18027933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.