BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35794454)

  • 1. Freeform 3D Ice Printing (3D-ICE) at the Micro Scale.
    Garg A; Yerneni SS; Campbell P; LeDuc PR; Ozdoganlar OB
    Adv Sci (Weinh); 2022 Sep; 9(27):e2201566. PubMed ID: 35794454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose nanocrystals as support nanomaterials for dual droplet-based freeform 3D printing.
    Yoon HS; Yang K; Kim YM; Nam K; Roh YH
    Carbohydr Polym; 2021 Nov; 272():118469. PubMed ID: 34420728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accessing microfluidics through feature-based design software for 3D printing.
    Shankles PG; Millet LJ; Aufrecht JA; Retterer ST
    PLoS One; 2018; 13(3):e0192752. PubMed ID: 29596418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review.
    Gyimah N; Scheler O; Rang T; Pardy T
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33810056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional printing of freeform helical microstructures: a review.
    Farahani RD; Chizari K; Therriault D
    Nanoscale; 2014 Sep; 6(18):10470-85. PubMed ID: 25072812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freeform 3D printing of soft matters: recent advances in technology for biomedical engineering.
    Chen S; Tan WS; Bin Juhari MA; Shi Q; Cheng XS; Chan WL; Song J
    Biomed Eng Lett; 2020 Nov; 10(4):453-479. PubMed ID: 33194241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freeform drop-on-demand laser printing of 3D alginate and cellular constructs.
    Xiong R; Zhang Z; Chai W; Huang Y; Chrisey DB
    Biofabrication; 2015 Dec; 7(4):045011. PubMed ID: 26693735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic phase control with printing and fluidic materials' interaction by inkjet printing an RF sensor directly on a stereolithographic 3D printed microfluidic structure.
    Park E; Lim S
    Lab Chip; 2021 Nov; 21(22):4364-4378. PubMed ID: 34585708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printed Functional and Biological Materials on Moving Freeform Surfaces.
    Zhu Z; Guo SZ; Hirdler T; Eide C; Fan X; Tolar J; McAlpine MC
    Adv Mater; 2018 Jun; 30(23):e1707495. PubMed ID: 29691902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D printed microfluidics for biological applications.
    Ho CM; Ng SH; Li KH; Yoon YJ
    Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inkjet printing-based fabrication of microscale 3D ice structures.
    Zheng F; Wang Z; Huang J; Li Z
    Microsyst Nanoeng; 2020; 6():89. PubMed ID: 34567699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
    Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K
    PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emulsion Designer Using Microfluidic Three-Dimensional Droplet Printing in Droplet.
    Chen L; Xiao Y; Wu Q; Yan X; Zhao P; Ruan J; Shan J; Chen D; Weitz DA; Ye F
    Small; 2021 Oct; 17(39):e2102579. PubMed ID: 34390183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freeform 3D printing of vascularized tissues: Challenges and strategies.
    Lee H; Jang TS; Han G; Kim HW; Jung HD
    J Tissue Eng; 2021; 12():20417314211057236. PubMed ID: 34868539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding.
    Hinton TJ; Hudson A; Pusch K; Lee A; Feinberg AW
    ACS Biomater Sci Eng; 2016 Oct; 2(10):1781-1786. PubMed ID: 27747289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study on environmental performance of 3D printing and conventional casting of concrete products with industrial wastes.
    Liu S; Lu B; Li H; Pan Z; Jiang J; Qian S
    Chemosphere; 2022 Jul; 298():134310. PubMed ID: 35301991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile and Low-Cost Fabrication of Modular Lock-and-Key Microfluidics for Integrated Connector Mixer Using a Stereolithography 3D Printing.
    Anshori I; Lukito V; Adhawiyah R; Putri D; Harimurti S; Rajab TLE; Pradana A; Akbar M; Syamsunarno MRAA; Handayani M; Purwidyantri A; Prabowo BA
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printing-enabled uniform temperature distributions in microfluidic devices.
    Sanchez D; Hawkins G; Hinnen HS; Day A; Woolley AT; Nordin GP; Munro T
    Lab Chip; 2022 Nov; 22(22):4393-4408. PubMed ID: 36282069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Printed Bionic Nanodevices.
    Kong YL; Gupta MK; Johnson BN; McAlpine MC
    Nano Today; 2016 Jun; 11(3):330-350. PubMed ID: 27617026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.