These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 35794497)

  • 21. Mutational analysis in international isolates and drug repurposing against SARS-CoV-2 spike protein: molecular docking and simulation approach.
    Pulakuntla S; Lokhande KB; Padmavathi P; Pal M; Swamy KV; Sadasivam J; Singh SA; Aramgam SL; Reddy VD
    Virusdisease; 2021 Dec; 32(4):690-702. PubMed ID: 34307771
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational Alanine Scanning and Structural Analysis of the SARS-CoV-2 Spike Protein/Angiotensin-Converting Enzyme 2 Complex.
    Laurini E; Marson D; Aulic S; Fermeglia M; Pricl S
    ACS Nano; 2020 Sep; 14(9):11821-11830. PubMed ID: 32833435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Repurposing the natural compounds as potential therapeutic agents for COVID-19 based on the molecular docking study of the main protease and the receptor-binding domain of spike protein.
    Eskandari V
    J Mol Model; 2022 May; 28(6):153. PubMed ID: 35578055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ACE2-derived peptides interact with the RBD domain of SARS-CoV-2 spike glycoprotein, disrupting the interaction with the human ACE2 receptor.
    Souza PFN; Amaral JL; Bezerra LP; Lopes FES; Freire VN; Oliveira JTA; Freitas CDT
    J Biomol Struct Dyn; 2022 Aug; 40(12):5493-5506. PubMed ID: 33427102
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SARS-CoV-2 entry inhibitors by dual targeting TMPRSS2 and ACE2: An in silico drug repurposing study.
    Baby K; Maity S; Mehta CH; Suresh A; Nayak UY; Nayak Y
    Eur J Pharmacol; 2021 Apr; 896():173922. PubMed ID: 33539819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In Silico Screening of Potential Chinese Herbal Medicine Against COVID-19 by Targeting SARS-CoV-2 3CLpro and Angiotensin Converting Enzyme II Using Molecular Docking.
    Gao LQ; Xu J; Chen SD
    Chin J Integr Med; 2020 Jul; 26(7):527-532. PubMed ID: 32632717
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mulberrofuran G, a Mulberry Component, Prevents SARS-CoV-2 Infection by Blocking the Interaction between SARS-CoV-2 Spike Protein S1 Receptor-Binding Domain and Human Angiotensin-Converting Enzyme 2 Receptor.
    Kim YS; Kim B; Kwon EB; Chung HS; Choi JG
    Nutrients; 2022 Oct; 14(19):. PubMed ID: 36235822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. HD5 and LL-37 Inhibit SARS-CoV and SARS-CoV-2 Binding to Human ACE2 by Molecular Simulation.
    Li D; Chen P; Shi T; Mehmood A; Qiu J
    Interdiscip Sci; 2021 Dec; 13(4):766-777. PubMed ID: 34363600
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Urtica dioica Agglutinin: A plant protein candidate for inhibition of SARS-COV-2 receptor-binding domain for control of Covid19 Infection.
    Sabzian-Molaei F; Nasiri Khalili MA; Sabzian-Molaei M; Shahsavarani H; Fattah Pour A; Molaei Rad A; Hadi A
    PLoS One; 2022; 17(7):e0268156. PubMed ID: 35901082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamics of the ACE2-SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms.
    Ali A; Vijayan R
    Sci Rep; 2020 Aug; 10(1):14214. PubMed ID: 32848162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Repositioning of histamine H
    Ge S; Wang X; Hou Y; Lv Y; Wang C; He H
    Eur J Pharmacol; 2021 Apr; 896():173897. PubMed ID: 33497607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential COVID-19 therapeutic approaches targeting angiotensin-converting enzyme 2; An updated review.
    Zanganeh S; Goodarzi N; Doroudian M; Movahed E
    Rev Med Virol; 2022 Jul; 32(4):e2321. PubMed ID: 34958163
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In silico binding profile characterization of SARS-CoV-2 spike protein and its mutants bound to human ACE2 receptor.
    Zhang Y; He X; Zhai J; Ji B; Man VH; Wang J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34013346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Critical Interactions Between the SARS-CoV-2 Spike Glycoprotein and the Human ACE2 Receptor.
    Taka E; Yilmaz SZ; Golcuk M; Kilinc C; Aktas U; Yildiz A; Gur M
    J Phys Chem B; 2021 Jun; 125(21):5537-5548. PubMed ID: 33979162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interfacial Water in the SARS Spike Protein: Investigating the Interaction with Human ACE2 Receptor and In Vitro Uptake in A549 Cells.
    Singh AV; Kayal A; Malik A; Maharjan RS; Dietrich P; Thissen A; Siewert K; Curato C; Pande K; Prahlad D; Kulkarni N; Laux P; Luch A
    Langmuir; 2022 Jul; 38(26):7976-7988. PubMed ID: 35736838
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Discovery of a Putative Allosteric Site in the SARS-CoV-2 Spike Protein Using an Integrated Structural/Dynamic Approach.
    Di Paola L; Hadi-Alijanvand H; Song X; Hu G; Giuliani A
    J Proteome Res; 2020 Nov; 19(11):4576-4586. PubMed ID: 32551648
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repurposing of anticancer phytochemicals for identifying potential fusion inhibitor for SARS-CoV-2 using molecular docking and molecular dynamics (MD) simulations.
    Patel CN; Goswami D; Sivakumar PK; Pandya HA
    J Biomol Struct Dyn; 2022 Oct; 40(17):7744-7761. PubMed ID: 33749528
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein Binding to ACE2 Receptors from Human, Pets, Farm Animals, and Putative Intermediate Hosts.
    Zhai X; Sun J; Yan Z; Zhang J; Zhao J; Zhao Z; Gao Q; He WT; Veit M; Su S
    J Virol; 2020 Jul; 94(15):. PubMed ID: 32404529
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of potential inhibitors of SARS-CoV-2 S protein-ACE2 interaction by
    Tristán-Flores FE; Casique-Aguirre D; Pliego-Arreaga R; Cervantes-Montelongo JA; García-Gutierrez P; Acosta-García G; Silva-Martínez GA
    F1000Res; 2021; 10():. PubMed ID: 34900223
    [No Abstract]   [Full Text] [Related]  

  • 40. Phytoconstituents from Moringa oleifera fruits target ACE2 and open spike glycoprotein to combat SARS-CoV-2: An integrative phytochemical and computational approach.
    Siddiqui S; Ahmad R; Alaidarous M; Zia Q; Ahmad Mir S; Alshehri B; Srivastava A; Trivedi A
    J Food Biochem; 2022 May; 46(5):e14062. PubMed ID: 35043973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.