These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35794723)

  • 1. BatchDTA: implicit batch alignment enhances deep learning-based drug-target affinity estimation.
    Luo H; Xiang Y; Fang X; Lin W; Wang F; Wu H; Wang H
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35794723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AttentionDTA: Drug-Target Binding Affinity Prediction by Sequence-Based Deep Learning With Attention Mechanism.
    Zhao Q; Duan G; Yang M; Cheng Z; Li Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):852-863. PubMed ID: 35471889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fast deep learning approach for beam orientation optimization for prostate cancer treated with intensity-modulated radiation therapy.
    Sadeghnejad Barkousaraie A; Ogunmolu O; Jiang S; Nguyen D
    Med Phys; 2020 Mar; 47(3):880-897. PubMed ID: 31868927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of drug protein interactions based on variable scale characteristic pyramid convolution network.
    Chen Y; Zhu Y; Zhang Z; Wang J; Wang C
    Methods; 2023 Mar; 211():42-47. PubMed ID: 36804213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation Study of QSAR/DNN Models Using the Competition Datasets.
    Kato Y; Hamada S; Goto H
    Mol Inform; 2020 Jan; 39(1-2):e1900154. PubMed ID: 31802634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug-target binding affinity prediction method based on a deep graph neural network.
    Ma D; Li S; Chen Z
    Math Biosci Eng; 2023 Jan; 20(1):269-282. PubMed ID: 36650765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Neural Networks for Modeling Visual Perceptual Learning.
    Wenliang LK; Seitz AR
    J Neurosci; 2018 Jul; 38(27):6028-6044. PubMed ID: 29793979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNN-PNN: A parallel deep neural network model to improve anticancer drug sensitivity.
    Chen S; Yang Y; Zhou H; Sun Q; Su R
    Methods; 2023 Jan; 209():1-9. PubMed ID: 36410694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep neural network for water/fat separation: Supervised training, unsupervised training, and no training.
    Jafari R; Spincemaille P; Zhang J; Nguyen TD; Luo X; Cho J; Margolis D; Prince MR; Wang Y
    Magn Reson Med; 2021 Apr; 85(4):2263-2277. PubMed ID: 33107127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meta-Transfer Learning Through Hard Tasks.
    Sun Q; Liu Y; Chen Z; Chua TS; Schiele B
    IEEE Trans Pattern Anal Mach Intell; 2022 Mar; 44(3):1443-1456. PubMed ID: 32822293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive Multitask Deep Neural Network Models for ADME-Tox Properties: Learning from Large Data Sets.
    Wenzel J; Matter H; Schmidt F
    J Chem Inf Model; 2019 Mar; 59(3):1253-1268. PubMed ID: 30615828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent developments in deep learning applied to protein structure prediction.
    Kandathil SM; Greener JG; Jones DT
    Proteins; 2019 Dec; 87(12):1179-1189. PubMed ID: 31589782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. P-DIFF+: Improving learning classifier with noisy labels by Noisy Negative Learning loss.
    Zhao Q; Hu W; Huang Y; Zhang F
    Neural Netw; 2021 Dec; 144():1-10. PubMed ID: 34418693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ELECTRA-DTA: a new compound-protein binding affinity prediction model based on the contextualized sequence encoding.
    Wang J; Wen N; Wang C; Zhao L; Cheng L
    J Cheminform; 2022 Mar; 14(1):14. PubMed ID: 35292100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporating imaging information from deep neural network layers into image guided radiation therapy (IGRT).
    Zhao W; Han B; Yang Y; Buyyounouski M; Hancock SL; Bagshaw H; Xing L
    Radiother Oncol; 2019 Nov; 140():167-174. PubMed ID: 31302347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GEFA: Early Fusion Approach in Drug-Target Affinity Prediction.
    Nguyen TM; Nguyen T; Le TM; Tran T
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):718-728. PubMed ID: 34197324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks.
    Jang H; Plis SM; Calhoun VD; Lee JH
    Neuroimage; 2017 Jan; 145(Pt B):314-328. PubMed ID: 27079534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing transfer performance across datasets for brain-computer interfaces using a combination of alignment strategies and adaptive batch normalization.
    Xu L; Xu M; Ma Z; Wang K; Jung TP; Ming D
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34407522
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.