These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35794953)

  • 1. Representation of Cone-Opponent Color Space in Macaque Early Visual Cortices.
    Du X; Jiang X; Kuriki I; Takahata T; Zhou T; Roe AW; Tanigawa H
    Front Neurosci; 2022; 16():891247. PubMed ID: 35794953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady-State Visual Evoked Potentials Elicited from Early Visual Cortex Reflect Both Perceptual Color Space and Cone-Opponent Mechanisms.
    Kaneko S; Kuriki I; Andersen SK
    Cereb Cortex Commun; 2020; 1(1):tgaa059. PubMed ID: 34296122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical Representation for Chromatic Processing across Macaque V1, V2, and V4.
    Liu Y; Li M; Zhang X; Lu Y; Gong H; Yin J; Chen Z; Qian L; Yang Y; Andolina IM; Shipp S; Mcloughlin N; Tang S; Wang W
    Neuron; 2020 Nov; 108(3):538-550.e5. PubMed ID: 32853551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hue and Orientation Pinwheels in Macaque Area V4.
    Parajuli A; Felleman DJ
    J Neurophysiol; 2024 Jul; ():. PubMed ID: 38988289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Representation of Perceptual Color Space in Macaque Posterior Inferior Temporal Cortex (the V4 Complex).
    Bohon KS; Hermann KL; Hansen T; Conway BR
    eNeuro; 2016; 3(4):. PubMed ID: 27595132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cone-Opponent Ganglion Cells in the Primate Fovea Tuned to Non-Cardinal Color Directions.
    Godat T; Kohout K; Yang Q; Parkins K; McGregor JE; Merigan WH; Williams DR; Patterson SS
    bioRxiv; 2023 Sep; ():. PubMed ID: 37745616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cone-Opponent Ganglion Cells in the Primate Fovea Tuned to Noncardinal Color Directions.
    Godat T; Kohout K; Parkins K; Yang Q; McGregor JE; Merigan WH; Williams DR; Patterson SS
    J Neurosci; 2024 May; 44(18):. PubMed ID: 38548340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cone opponent functional domains in primary visual cortex combine signals for color appearance mechanisms.
    Li P; Garg AK; Zhang LA; Rashid MS; Callaway EM
    Nat Commun; 2022 Oct; 13(1):6344. PubMed ID: 36284139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Color blobs in cortical areas V1 and V2 of the new world monkey Callithrix jacchus, revealed by non-differential optical imaging.
    Valverde Salzmann MF; Bartels A; Logothetis NK; Schüz A
    J Neurosci; 2012 Jun; 32(23):7881-94. PubMed ID: 22674264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hue maps in primate striate cortex.
    Xiao Y; Casti A; Xiao J; Kaplan E
    Neuroimage; 2007 Apr; 35(2):771-86. PubMed ID: 17276087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization of hue selectivity in macaque V2 thin stripes.
    Lim H; Wang Y; Xiao Y; Hu M; Felleman DJ
    J Neurophysiol; 2009 Nov; 102(5):2603-15. PubMed ID: 19571184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Columnar organization of mid-spectral and end-spectral hue preferences in human visual cortex.
    Nasr S; Tootell RBH
    Neuroimage; 2018 Nov; 181():748-759. PubMed ID: 30053514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hue Selectivity in Human Visual Cortex Revealed by Functional Magnetic Resonance Imaging.
    Kuriki I; Sun P; Ueno K; Tanaka K; Cheng K
    Cereb Cortex; 2015 Dec; 25(12):4869-84. PubMed ID: 26423093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Color vision, cones, and color-coding in the cortex.
    Conway BR
    Neuroscientist; 2009 Jun; 15(3):274-90. PubMed ID: 19436076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hue scaling of isoluminant and cone-specific lights.
    De Valois RL; De Valois KK; Switkes E; Mahon L
    Vision Res; 1997 Apr; 37(7):885-97. PubMed ID: 9156186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Color, orientation and cytochrome oxidase reactivity in areas V1, V2 and V4 of macaque monkey visual cortex.
    Yoshioka T; Dow BM
    Behav Brain Res; 1996 Apr; 76(1-2):71-88. PubMed ID: 8734044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques.
    Nakamura H; Gattass R; Desimone R; Ungerleider LG
    J Neurosci; 1993 Sep; 13(9):3681-91. PubMed ID: 7690064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal dynamics of chromatic tuning in macaque primary visual cortex.
    Cottaris NP; De Valois RL
    Nature; 1998 Oct; 395(6705):896-900. PubMed ID: 9804422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Receptive fields and functional architecture of macaque V2.
    Levitt JB; Kiper DC; Movshon JA
    J Neurophysiol; 1994 Jun; 71(6):2517-42. PubMed ID: 7931532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplicative modulations enhance diversity of hue-selective cells.
    Mehrani P; Mouraviev A; Tsotsos JK
    Sci Rep; 2020 May; 10(1):8491. PubMed ID: 32444800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.