BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35795184)

  • 1. CT295 Is
    Triboulet S; N'Gadjaga MD; Niragire B; Köstlbacher S; Horn M; Aimanianda V; Subtil A
    Front Cell Infect Microbiol; 2022; 12():866729. PubMed ID: 35795184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toll-like receptor 2 activation by Chlamydia trachomatis is plasmid dependent, and plasmid-responsive chromosomal loci are coordinately regulated in response to glucose limitation by C. trachomatis but not by C. muridarum.
    O'Connell CM; AbdelRahman YM; Green E; Darville HK; Saira K; Smith B; Darville T; Scurlock AM; Meyer CR; Belland RJ
    Infect Immun; 2011 Mar; 79(3):1044-56. PubMed ID: 21199910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of Arabidopsis plastidial phosphoglucomutase in tobacco stimulates photosynthetic carbon flow into starch synthesis.
    Uematsu K; Suzuki N; Iwamae T; Inui M; Yukawa H
    J Plant Physiol; 2012 Oct; 169(15):1454-62. PubMed ID: 22705254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequestration of host metabolism by an intracellular pathogen.
    Gehre L; Gorgette O; Perrinet S; Prevost MC; Ducatez M; Giebel AM; Nelson DE; Ball SG; Subtil A
    Elife; 2016 Mar; 5():e12552. PubMed ID: 26981769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of the phosphoglucomutase gene pgm in Corynebacterium glutamicum affects cell shape and glycogen metabolism.
    Seibold GM; Eikmanns BJ
    Biosci Rep; 2013 Aug; 33(4):. PubMed ID: 23863124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deeply divergent phosphoglucomutase (PGM) of Giardia lamblia has both PGM and phosphomannomutase activities.
    Mitra S; Cui J; Robbins PW; Samuelson J
    Glycobiology; 2010 Oct; 20(10):1233-40. PubMed ID: 20507884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress response requires an efficient connection between glycogen and central carbon metabolism by phosphoglucomutases in cyanobacteria.
    Ortega-Martínez P; Roldán M; Díaz-Troya S; Florencio FJ
    J Exp Bot; 2023 Mar; 74(5):1532-1550. PubMed ID: 36454663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of type III secretion substrates of Chlamydia trachomatis using Yersinia enterocolitica as a heterologous system.
    da Cunha M; Milho C; Almeida F; Pais SV; Borges V; Maurício R; Borrego MJ; Gomes JP; Mota LJ
    BMC Microbiol; 2014 Feb; 14():40. PubMed ID: 24533538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Chlamydia trachomatis type III secretion chaperone Slc1 engages multiple early effectors, including TepP, a tyrosine-phosphorylated protein required for the recruitment of CrkI-II to nascent inclusions and innate immune signaling.
    Chen YS; Bastidas RJ; Saka HA; Carpenter VK; Richards KL; Plano GV; Valdivia RH
    PLoS Pathog; 2014 Feb; 10(2):e1003954. PubMed ID: 24586162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and Preliminary Characterization of Novel Type III Secreted Effector Proteins in Chlamydia trachomatis.
    McCaslin PN; Andersen SE; Icardi CM; Faris R; Steiert B; Smith P; Haider J; Weber MM
    Infect Immun; 2023 Jul; 91(7):e0049122. PubMed ID: 37347192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 2-pyridone-amide inhibitor targets the glucose metabolism pathway of Chlamydia trachomatis.
    Engström P; Krishnan KS; Ngyuen BD; Chorell E; Normark J; Silver J; Bastidas RJ; Welch MD; Hultgren SJ; Wolf-Watz H; Valdivia RH; Almqvist F; Bergström S
    mBio; 2014 Dec; 6(1):e02304-14. PubMed ID: 25550323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of putative Chlamydia trachomatis chaperones Scc2 and Scc3 and their use in the identification of type III secretion substrates.
    Fields KA; Fischer ER; Mead DJ; Hackstadt T
    J Bacteriol; 2005 Sep; 187(18):6466-78. PubMed ID: 16159780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of novel type III secretion chaperone-substrate complexes of Chlamydia trachomatis.
    Pais SV; Milho C; Almeida F; Mota LJ
    PLoS One; 2013; 8(2):e56292. PubMed ID: 23431368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Mesorhizobium loti glycogen operon: effect of phosphoglucomutase (pgm) and glycogen synthase (g/gA) null mutants on nodulation of Lotus tenuis.
    Lepek VC; D'Antuono AL; Tomatis PE; Ugalde JE; Giambiagi S; Ugalde RA
    Mol Plant Microbe Interact; 2002 Apr; 15(4):368-75. PubMed ID: 12026175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlamydia trachomatis Type III Secretion Proteins Regulate Transcription.
    Hanson BR; Slepenkin A; Peterson EM; Tan M
    J Bacteriol; 2015 Oct; 197(20):3238-44. PubMed ID: 26216849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that CT694 is a novel Chlamydia trachomatis T3S substrate capable of functioning during invasion or early cycle development.
    Hower S; Wolf K; Fields KA
    Mol Microbiol; 2009 Jun; 72(6):1423-37. PubMed ID: 19460098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic cycling in beta-phosphoglucomutase: a kinetic and structural analysis.
    Zhang G; Dai J; Wang L; Dunaway-Mariano D; Tremblay LW; Allen KN
    Biochemistry; 2005 Jul; 44(27):9404-16. PubMed ID: 15996095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane.
    Olson MG; Ouellette SP; Rucks EA
    J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The DUF582 Proteins of
    Vromman F; Perrinet S; Gehre L; Subtil A
    Front Cell Infect Microbiol; 2016; 6():123. PubMed ID: 27774439
    [No Abstract]   [Full Text] [Related]  

  • 20. Application of a
    Yanatori I; Miura K; Chen YS; Valdivia RH; Kishi F
    J Bacteriol; 2021 Jun; 203(11):. PubMed ID: 33685970
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.