BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35795826)

  • 1. Corrigendum: Fibril Surface-Dependent Amyloid Precursors Revealed by Coarse-Grained Molecular Dynamics Simulation.
    Ma YW; Lin TY; Tsai MY
    Front Mol Biosci; 2022; 9():944884. PubMed ID: 35795826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibril Surface-Dependent Amyloid Precursors Revealed by Coarse-Grained Molecular Dynamics Simulation.
    Ma YW; Lin TY; Tsai MY
    Front Mol Biosci; 2021; 8():719320. PubMed ID: 34422910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational studies of protein aggregation mediated by amyloid: Fibril elongation and secondary nucleation.
    Cao Y; Tang X; Yuan M; Han W
    Prog Mol Biol Transl Sci; 2020; 170():461-504. PubMed ID: 32145951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidating Important Sites and the Mechanism for Amyloid Fibril Formation by Coarse-Grained Molecular Dynamics.
    Rojas A; Maisuradze N; Kachlishvili K; Scheraga HA; Maisuradze GG
    ACS Chem Neurosci; 2017 Jan; 8(1):201-209. PubMed ID: 28095675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of amyloid β peptides in the presence of fibril seeds: one-pot coarse-grained molecular dynamics simulations.
    Xu L; Chen Y; Wang X
    J Phys Chem B; 2014 Aug; 118(31):9238-46. PubMed ID: 25050788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corrigendum: Modeling DNA Opening in the Eukaryotic Transcription Initiation Complexes
    Shino G; Takada S
    Front Mol Biosci; 2021; 8():817343. PubMed ID: 34950705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of Nucleation and Growth of Aβ40 Fibrils from All-Atom and Coarse-Grained Simulations.
    Sasmal S; Schwierz N; Head-Gordon T
    J Phys Chem B; 2016 Dec; 120(47):12088-12097. PubMed ID: 27806205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fibril elongation by Aβ(17-42): kinetic network analysis of hybrid-resolution molecular dynamics simulations.
    Han W; Schulten K
    J Am Chem Soc; 2014 Sep; 136(35):12450-60. PubMed ID: 25134066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Characteristics of Monomeric Aβ42 on Fibril in the Early Stage of Secondary Nucleation Process.
    Noda K; Tachi Y; Okamoto Y
    ACS Chem Neurosci; 2020 Oct; 11(19):2989-2998. PubMed ID: 32794732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From Aβ Filament to Fibril: Molecular Mechanism of Surface-Activated Secondary Nucleation from All-Atom MD Simulations.
    Schwierz N; Frost CV; Geissler PL; Zacharias M
    J Phys Chem B; 2017 Feb; 121(4):671-682. PubMed ID: 27992231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of protofibril elongation and association involved in Aβ42 peptide aggregation in Alzheimer's disease.
    Ghosh P; Kumar A; Datta B; Rangachari V
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S24. PubMed ID: 20946608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding Amyloid-β Oligomerization at the Molecular Level: The Role of the Fibril Surface.
    Barz B; Strodel B
    Chemistry; 2016 Jun; 22(26):8768-72. PubMed ID: 27135646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulations of nucleation and elongation of amyloid fibrils.
    Zhang J; Muthukumar M
    J Chem Phys; 2009 Jan; 130(3):035102. PubMed ID: 19173542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transthyretin Interferes with Aβ Amyloid Formation by Redirecting Oligomeric Nuclei into Non-Amyloid Aggregates.
    Nilsson L; Pamrén A; Islam T; Brännström K; Golchin SA; Pettersson N; Iakovleva I; Sandblad L; Gharibyan AL; Olofsson A
    J Mol Biol; 2018 Aug; 430(17):2722-2733. PubMed ID: 29890120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic phase diagram of amyloid-β (16-22) peptide.
    Wang Y; Bunce SJ; Radford SE; Wilson AJ; Auer S; Hall CK
    Proc Natl Acad Sci U S A; 2019 Feb; 116(6):2091-2096. PubMed ID: 30674664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data showing the lipid conformations and membrane binding behaviors of beta-amyloid fibrils in phase-separated cholesterol-enriched lipid domains with and without glycolipid and oxidized cholesterol from coarse-grained molecular dynamics simulations.
    Cheng SY; Cao Y; Rouzbehani M; Cheng KH
    Data Brief; 2020 Jun; 30():105496. PubMed ID: 32368578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer's disease amyloid-beta protein.
    Harper JD; Lieber CM; Lansbury PT
    Chem Biol; 1997 Dec; 4(12):951-9. PubMed ID: 9427660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The coarse-grained plaque: a divergent Aβ plaque-type in early-onset Alzheimer's disease.
    Boon BDC; Bulk M; Jonker AJ; Morrema THJ; van den Berg E; Popovic M; Walter J; Kumar S; van der Lee SJ; Holstege H; Zhu X; Van Nostrand WE; Natté R; van der Weerd L; Bouwman FH; van de Berg WDJ; Rozemuller AJM; Hoozemans JJM
    Acta Neuropathol; 2020 Dec; 140(6):811-830. PubMed ID: 32926214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hydrophobic effect characterises the thermodynamic signature of amyloid fibril growth.
    van Gils JHM; van Dijk E; Peduzzo A; Hofmann A; Vettore N; Schützmann MP; Groth G; Mouhib H; Otzen DE; Buell AK; Abeln S
    PLoS Comput Biol; 2020 May; 16(5):e1007767. PubMed ID: 32365068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.