BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 35795910)

  • 1. Using
    Schrevens S; Durandau E; Tran VDT; Sanglard D
    Virulence; 2022 Dec; 13(1):1285-1303. PubMed ID: 35795910
    [No Abstract]   [Full Text] [Related]  

  • 2. Glutathione biosynthesis in the yeast pathogens Candida glabrata and Candida albicans: essential in C. glabrata, and essential for virulence in C. albicans.
    Yadav AK; Desai PR; Rai MN; Kaur R; Ganesan K; Bachhawat AK
    Microbiology (Reading); 2011 Feb; 157(Pt 2):484-495. PubMed ID: 20966090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new regulator in the crossroads of oxidative stress resistance and virulence in
    Pais P; Vagueiro S; Mil-Homens D; Pimenta AI; Viana R; Okamoto M; Chibana H; Fialho AM; Teixeira MC
    Virulence; 2020 Dec; 11(1):1522-1538. PubMed ID: 33135521
    [No Abstract]   [Full Text] [Related]  

  • 4. Transcriptomic and proteomic profiling revealed reprogramming of carbon metabolism in acetate-grown human pathogen Candida glabrata.
    Chew SY; Brown AJP; Lau BYC; Cheah YK; Ho KL; Sandai D; Yahaya H; Than LTL
    J Biomed Sci; 2021 Jan; 28(1):1. PubMed ID: 33388061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Virulence of the opportunistic pathogen mushroom Candida glabrata].
    Castaño I; Cormack B; De Las Peñas A
    Rev Latinoam Microbiol; 2006; 48(2):66-9. PubMed ID: 17578074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gln3 is a main regulator of nitrogen assimilation in Candida glabrata.
    Pérez-Delos Santos FJ; Riego-Ruiz L
    Microbiology (Reading); 2016 Aug; 162(8):1490-1499. PubMed ID: 27222014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relative Abundances of Candida albicans and Candida glabrata in
    Olson ML; Jayaraman A; Kao KC
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29427422
    [No Abstract]   [Full Text] [Related]  

  • 8. Using Bioluminescence to Image Candida glabrata Urinary Tract Infections in Mice.
    Schrevens S; Torelli R; Sanguinetti M; Sanglard D
    Methods Mol Biol; 2023; 2658():239-247. PubMed ID: 37024707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Candida glabrata Parent Strain Trap: How Phenotypic Diversity Affects Metabolic Fitness and Host Interactions.
    Usher J; Ribeiro GF; Childers DS
    Microbiol Spectr; 2023 Feb; 11(1):e0372422. PubMed ID: 36633405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Candida krusei and Candida glabrata on Candida albicans gene expression in in vitro biofilms.
    Barros PP; Ribeiro FC; Rossoni RD; Junqueira JC; Jorge AO
    Arch Oral Biol; 2016 Apr; 64():92-101. PubMed ID: 26803674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative virulence of Candida auris with Candida haemulonii, Candida glabrata and Candida albicans in a murine model.
    Fakhim H; Vaezi A; Dannaoui E; Chowdhary A; Nasiry D; Faeli L; Meis JF; Badali H
    Mycoses; 2018 Jun; 61(6):377-382. PubMed ID: 29460345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating
    Schrevens S; Sanglard D
    J Fungi (Basel); 2021 Oct; 7(10):. PubMed ID: 34682265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The glyoxylate cycle and alternative carbon metabolism as metabolic adaptation strategies of Candida glabrata: perspectives from Candida albicans and Saccharomyces cerevisiae.
    Chew SY; Chee WJY; Than LTL
    J Biomed Sci; 2019 Jul; 26(1):52. PubMed ID: 31301737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Urea amidolyase (DUR1,2) contributes to virulence and kidney pathogenesis of Candida albicans.
    Navarathna DH; Lionakis MS; Lizak MJ; Munasinghe J; Nickerson KW; Roberts DD
    PLoS One; 2012; 7(10):e48475. PubMed ID: 23144764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungal biotin homeostasis is essential for immune evasion after macrophage phagocytosis and virulence.
    Sprenger M; Hartung TS; Allert S; Wisgott S; Niemiec MJ; Graf K; Jacobsen ID; Kasper L; Hube B
    Cell Microbiol; 2020 Jul; 22(7):e13197. PubMed ID: 32083801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of mitochondrial functions associated with azole resistance in Candida glabrata results in enhanced virulence in mice.
    Ferrari S; Sanguinetti M; De Bernardis F; Torelli R; Posteraro B; Vandeputte P; Sanglard D
    Antimicrob Agents Chemother; 2011 May; 55(5):1852-60. PubMed ID: 21321146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A yeast by any other name: Candida glabrata and its interaction with the host.
    Kaur R; Domergue R; Zupancic ML; Cormack BP
    Curr Opin Microbiol; 2005 Aug; 8(4):378-84. PubMed ID: 15996895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of pathogenesis and host immune responses to Candida glabrata and Candida albicans in systemically infected immunocompetent mice.
    Brieland J; Essig D; Jackson C; Frank D; Loebenberg D; Menzel F; Arnold B; DiDomenico B; Hare R
    Infect Immun; 2001 Aug; 69(8):5046-55. PubMed ID: 11447185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upregulation of the Adhesin Gene EPA1 Mediated by PDR1 in Candida glabrata Leads to Enhanced Host Colonization.
    Vale-Silva LA; Moeckli B; Torelli R; Posteraro B; Sanguinetti M; Sanglard D
    mSphere; 2016; 1(2):. PubMed ID: 27303714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A TRP1-marker-based system for gene complementation, overexpression, reporter gene expression and gene modification in Candida glabrata.
    Sprenger M; Brunke S; Hube B; Kasper L
    FEMS Yeast Res; 2021 Jan; 20(8):. PubMed ID: 33289831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.