These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 35796228)

  • 21. Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark.
    Ding F; Dokholyan NV
    J Chem Inf Model; 2013 Aug; 53(8):1871-9. PubMed ID: 23237273
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling Binding with Large Conformational Changes: Key Points in Ensemble-Docking Approaches.
    Motta S; Bonati L
    J Chem Inf Model; 2017 Jul; 57(7):1563-1578. PubMed ID: 28616990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ligand Docking to Intermediate and Close-To-Bound Conformers Generated by an Elastic Network Model Based Algorithm for Highly Flexible Proteins.
    Kurkcuoglu Z; Doruker P
    PLoS One; 2016; 11(6):e0158063. PubMed ID: 27348230
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA.
    Greenidge PA; Kramer C; Mozziconacci JC; Sherman W
    J Chem Inf Model; 2014 Oct; 54(10):2697-717. PubMed ID: 25266271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of Molecular Dynamics to Expand Docking Program's Exploratory Capabilities and to Evaluate Its Predictions.
    Kasprzak WK; Shapiro BA
    Methods Mol Biol; 2023; 2568():75-101. PubMed ID: 36227563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toward Focusing Conformational Ensembles on Bioactive Conformations: A Molecular Mechanics/Quantum Mechanics Study.
    Avgy-David HH; Senderowitz H
    J Chem Inf Model; 2015 Oct; 55(10):2154-67. PubMed ID: 26406154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DynaBiS: A hierarchical sampling algorithm to identify flexible binding sites for large ligands and peptides.
    Melse O; Hecht S; Antes I
    Proteins; 2022 Jan; 90(1):18-32. PubMed ID: 34288078
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A flexible-protein molecular docking study of the binding of ruthenium complex compounds to PIM1, GSK-3β, and CDK2/Cyclin A protein kinases.
    Liu Y; Agrawal NJ; Radhakrishnan R
    J Mol Model; 2013 Jan; 19(1):371-82. PubMed ID: 22926267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. @TOME 3.0: Interfacing Protein Structure Modeling and Ligand Docking.
    Pons JL; Reys V; Grand F; Moreau V; Gracy J; Exner TE; Labesse G
    J Mol Biol; 2024 Sep; 436(17):168704. PubMed ID: 39237192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Applying conformational selection theory to improve crossdocking efficiency in 3-phosphoinositide dependent protein kinase-1.
    Kotasthane A; Mulakala C; Viswanadhan VN
    Proteins; 2014 Mar; 82(3):436-51. PubMed ID: 23999908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GalaxyDock3: Protein-ligand docking that considers the full ligand conformational flexibility.
    Yang J; Baek M; Seok C
    J Comput Chem; 2019 Dec; 40(31):2739-2748. PubMed ID: 31423613
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ligand binding remodels protein side-chain conformational heterogeneity.
    Wankowicz SA; de Oliveira SH; Hogan DW; van den Bedem H; Fraser JS
    Elife; 2022 Mar; 11():. PubMed ID: 35312477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Constructing ensembles of flexible fragments in native proteins by iterative stochastic elimination is relevant to protein-protein interfaces.
    Noy E; Tabakman T; Goldblum A
    Proteins; 2007 Aug; 68(3):702-11. PubMed ID: 17510963
    [TBL] [Abstract][Full Text] [Related]  

  • 34. HarmonyDOCK: the structural analysis of poses in protein-ligand docking.
    Plewczynski D; Philips A; Von Grotthuss M; Rychlewski L; Ginalski K
    J Comput Biol; 2014 Mar; 21(3):247-56. PubMed ID: 21091053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic Docking Using Multicanonical Molecular Dynamics: Simulating Complex Formation at the Atomistic Level.
    Bekker GJ; Kamiya N
    Methods Mol Biol; 2021; 2266():187-202. PubMed ID: 33759128
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple receptor conformers based molecular docking study of fluorine enhanced ethionamide with mycobacterium enoyl ACP reductase (InhA).
    Khan AM; Shawon J; Halim MA
    J Mol Graph Model; 2017 Oct; 77():386-398. PubMed ID: 28957755
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Testing a flexible-receptor docking algorithm in a model binding site.
    Wei BQ; Weaver LH; Ferrari AM; Matthews BW; Shoichet BK
    J Mol Biol; 2004 Apr; 337(5):1161-82. PubMed ID: 15046985
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of binding poses to FXR using multi-targeted docking combined with molecular dynamics and enhanced sampling.
    Bhakat S; Åberg E; Söderhjelm P
    J Comput Aided Mol Des; 2018 Jan; 32(1):59-73. PubMed ID: 29052792
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-conformer ensemble docking to difficult protein targets.
    Ellingson SR; Miao Y; Baudry J; Smith JC
    J Phys Chem B; 2015 Jan; 119(3):1026-34. PubMed ID: 25198248
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure-Based Site of Metabolism (SOM) Prediction of Ligand for CYP3A4 Enzyme: Comparison of Glide XP and Induced Fit Docking (IFD).
    Lokwani DK; Sarkate AP; Karnik KS; Nikalje APG; Seijas JA
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32244772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.