These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

627 related articles for article (PubMed ID: 35796602)

  • 1. A Look Inside the Black Box of Machine Learning Photodynamics Simulations.
    Li J; Lopez SA
    Acc Chem Res; 2022 Jul; 55(14):1972-1984. PubMed ID: 35796602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic discovery of photoisomerization mechanisms with nanosecond machine learning photodynamics simulations.
    Li J; Reiser P; Boswell BR; Eberhard A; Burns NZ; Friederich P; Lopez SA
    Chem Sci; 2021 Mar; 12(14):5302-5314. PubMed ID: 34163763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excited-State Distortions Promote the Photochemical 4π-Electrocyclizations of Fluorobenzenes via Machine Learning Accelerated Photodynamics Simulations.
    Li J; Lopez SA
    Chemistry; 2022 Jul; 28(38):e202200651. PubMed ID: 35474348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine-Learning Photodynamics Simulations Uncover the Role of Substituent Effects on the Photochemical Formation of Cubanes.
    Li J; Stein R; Adrion DM; Lopez SA
    J Am Chem Soc; 2021 Dec; 143(48):20166-20175. PubMed ID: 34787403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiconfigurational Calculations and Nonadiabatic Molecular Dynamics Explain Tricyclooctadiene Photochemical Chemoselectivity.
    Li J; Lopez SA
    J Phys Chem A; 2020 Sep; 124(38):7623-7632. PubMed ID: 32866386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Molecular Photochemistry Using Machine-Learning-Enhanced Quantum Dynamics Simulations.
    Richings GW; Habershon S
    Acc Chem Res; 2022 Jan; 55(2):209-220. PubMed ID: 34982533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiconfigurational Calculations and Photodynamics Describe Norbornadiene Photochemistry.
    Hernández FJ; Cox JM; Li J; Crespo-Otero R; Lopez SA
    J Org Chem; 2023 May; 88(9):5311-5320. PubMed ID: 37022327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiconfigurational photodynamics simulations reveal the mechanism of photodecarbonylations of cyclopropenones in explicit aqueous environments.
    Adrion DM; Karunaratne WV; Lopez SA
    Chem Sci; 2023 Nov; 14(45):13205-13218. PubMed ID: 38023495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning enables long time scale molecular photodynamics simulations.
    Westermayr J; Gastegger M; Menger MFSJ; Mai S; González L; Marquetand P
    Chem Sci; 2019 Sep; 10(35):8100-8107. PubMed ID: 31857878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast X-ray Transient Absorption Spectroscopy of Gas-Phase Photochemical Reactions: A New Universal Probe of Photoinduced Molecular Dynamics.
    Bhattacherjee A; Leone SR
    Acc Chem Res; 2018 Dec; 51(12):3203-3211. PubMed ID: 30462481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast Photocontrolled Rotation in a Molecular Motor Investigated by Machine Learning-Based Nonadiabatic Dynamics Simulations.
    Xu H; Zhang B; Tao Y; Xu W; Hu B; Yan F; Wen J
    J Phys Chem A; 2023 Sep; 127(37):7682-7693. PubMed ID: 37672626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Kinetics and Dynamics of Spin-Dependent Processes.
    Dergachev ID; Dergachev VD; Rooein M; Mirzanejad A; Varganov SA
    Acc Chem Res; 2023 Apr; 56(7):856-866. PubMed ID: 36926853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of Highly Accurate Machine Learning Potential Energy Surfaces for Excited-State Dynamics Simulations Based on Low-Level Data Sets.
    Li S; Xie BB; Yin BW; Liu L; Shen L; Fang WH
    J Phys Chem A; 2024 Jul; 128(28):5516-5524. PubMed ID: 38954640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational Control of the Photodynamics of a Bilirubin Dipyrrinone Subunit: Femtosecond Spectroscopy Combined with Nonadiabatic Simulations.
    Janoš J; Madea D; Mahvidi S; Mujawar T; Švenda J; Suchan J; Slavíček P; Klán P
    J Phys Chem A; 2020 Dec; 124(50):10457-10471. PubMed ID: 33283519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining SchNet and SHARC: The SchNarc Machine Learning Approach for Excited-State Dynamics.
    Westermayr J; Gastegger M; Marquetand P
    J Phys Chem Lett; 2020 May; 11(10):3828-3834. PubMed ID: 32311258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photodynamics of oxybenzone sunscreen: Nonadiabatic dynamics simulations.
    Li CX; Guo WW; Xie BB; Cui G
    J Chem Phys; 2016 Aug; 145(7):074308. PubMed ID: 27544106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photochemical reactions in biological systems: probing the effect of the environment by means of hybrid quantum chemistry/molecular mechanics simulations.
    Boggio-Pasqua M; Burmeister CF; Robb MA; Groenhof G
    Phys Chem Chem Phys; 2012 Jun; 14(22):7912-28. PubMed ID: 22534732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GPU-Accelerated State-Averaged Complete Active Space Self-Consistent Field Interfaced with Ab Initio Multiple Spawning Unravels the Photodynamics of Provitamin D3.
    Snyder JW; Curchod BF; Martínez TJ
    J Phys Chem Lett; 2016 Jul; 7(13):2444-9. PubMed ID: 27266759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast photodynamics of furan.
    Fuji T; Suzuki Y; Horio T; Suzuki T; Mitrić R; Werner U; Bonačić-Koutecký V
    J Chem Phys; 2010 Dec; 133(23):234303. PubMed ID: 21186867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.