These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 35796666)
1. Bioinspired Baek J; Si T; Kim HY; Oh K Org Lett; 2022 Jul; 24(27):4982-4986. PubMed ID: 35796666 [TBL] [Abstract][Full Text] [Related]
2. Efficient and selective aerobic oxidation of alcohols into aldehydes and ketones using ruthenium/TEMPO as the catalytic system. Dijksman A; Marino-González A; Mairata I Payeras A; Arends IW; Sheldon RA J Am Chem Soc; 2001 Jul; 123(28):6826-33. PubMed ID: 11448187 [TBL] [Abstract][Full Text] [Related]
3. Novel polyaniline-supported molybdenum-catalyzed aerobic oxidation of alcohols to aldehydes and ketones. Velusamy S; Ahamed M; Punniyamurthy T Org Lett; 2004 Dec; 6(26):4821-4. PubMed ID: 15606075 [TBL] [Abstract][Full Text] [Related]
4. TEMPO/HCl/NaNO2 catalyst: a transition-metal-free approach to efficient aerobic oxidation of alcohols to aldehydes and ketones under mild conditions. Wang X; Liu R; Jin Y; Liang X Chemistry; 2008; 14(9):2679-85. PubMed ID: 18293352 [TBL] [Abstract][Full Text] [Related]
5. Remarkable effect of bimetallic nanocluster catalysts for aerobic oxidation of alcohols: combining metals changes the activities and the reaction pathways to aldehydes/carboxylic acids or esters. Kaizuka K; Miyamura H; Kobayashi S J Am Chem Soc; 2010 Nov; 132(43):15096-8. PubMed ID: 20931964 [TBL] [Abstract][Full Text] [Related]
6. Cobalt-Catalyzed Aerobic Oxidative Cleavage of Alkyl Aldehydes: Synthesis of Ketones, Esters, Amides, and α-Ketoamides. Li T; Hammond GB; Xu B Chemistry; 2021 Jul; 27(38):9737-9741. PubMed ID: 34010489 [TBL] [Abstract][Full Text] [Related]
7. Ruthenium-on-Carbon-Catalyzed Facile Solvent-Free Oxidation of Alcohols: Efficient Progress under Solid-Solid (Liquid)-Gas Conditions. Park K; Jiang J; Yamada T; Sajiki H Chem Pharm Bull (Tokyo); 2021; 69(12):1200-1205. PubMed ID: 34853287 [TBL] [Abstract][Full Text] [Related]
8. Manganese(I)-Catalyzed Cross-Coupling of Ketones and Secondary Alcohols with Primary Alcohols. Gawali SS; Pandia BK; Pal S; Gunanathan C ACS Omega; 2019 Jun; 4(6):10741-10754. PubMed ID: 31460172 [TBL] [Abstract][Full Text] [Related]
9. Efficient ruthenium-catalyzed aerobic oxidation of alcohols using a biomimetic coupled catalytic system. Csjernyik G; Ell AH; Fadini L; Pugin B; Bäckvall JE J Org Chem; 2002 Mar; 67(5):1657-62. PubMed ID: 11871899 [TBL] [Abstract][Full Text] [Related]
10. Expansion of Substrate Scope for Nitroxyl Radical/Copper-Catalyzed Aerobic Oxidation of Primary Alcohols: A Guideline for Catalyst Selection. Sasano Y; Yamaichi A; Sasaki R; Nagasawa S; Iwabuchi Y Chem Pharm Bull (Tokyo); 2021; 69(5):488-497. PubMed ID: 33952858 [TBL] [Abstract][Full Text] [Related]
11. A novel environmentally benign method for the selective oxidation of alcohols to aldehydes and ketones. Shi F; Tse MK; Beller M Chem Asian J; 2007 Mar; 2(3):411-5. PubMed ID: 17441178 [TBL] [Abstract][Full Text] [Related]
12. Highly active, immobilized ruthenium catalysts for oxidation of alcohols to aldehydes and ketones. Preparation and use in both batch and flow systems. Kobayashi S; Miyamura H; Akiyama R; Ishida T J Am Chem Soc; 2005 Jun; 127(25):9251-4. PubMed ID: 15969605 [TBL] [Abstract][Full Text] [Related]
13. Iron(II)-Catalyzed Biomimetic Aerobic Oxidation of Alcohols. Guðmundsson A; Schlipköter KE; Bäckvall JE Angew Chem Int Ed Engl; 2020 Mar; 59(13):5403-5406. PubMed ID: 31999013 [TBL] [Abstract][Full Text] [Related]
14. Direct conversion of alcohols to α-chloro aldehydes and α-chloro ketones. Jing Y; Daniliuc CG; Studer A Org Lett; 2014 Sep; 16(18):4932-5. PubMed ID: 25197943 [TBL] [Abstract][Full Text] [Related]
15. A method for the characterization of aldehyde dehydrogenase with use of alcohol dehydrogenase. Herold DA; Keil K; Bruns DE Res Commun Chem Pathol Pharmacol; 1987 Nov; 58(2):257-67. PubMed ID: 3423423 [TBL] [Abstract][Full Text] [Related]
16. Nicotinoprotein (NADH-containing) alcohol dehydrogenase from Rhodococcus erythropolis DSM 1069: an efficient catalyst for coenzyme-independent oxidation of a broad spectrum of alcohols and the interconversion of alcohols and aldehydes. Schenkels P; Duine JA Microbiology (Reading); 2000 Apr; 146 ( Pt 4)():775-785. PubMed ID: 10784035 [TBL] [Abstract][Full Text] [Related]
17. One-Pot Direct Oxidation of Primary Amines to Carboxylic Acids through Tandem ortho-Naphthoquinone-Catalyzed and TBHP-Promoted Oxidation Sequence. Si T; Kim HY; Oh K Chemistry; 2021 Dec; 27(72):18150-18155. PubMed ID: 34755925 [TBL] [Abstract][Full Text] [Related]
18. Cytochrome P-450 model reactions: efficient and highly selective oxidation of alcohols with tetrabutylammonium peroxymonosulfate catalyzed by Mn-porphyrins. Rezaeifard A; Jafarpour M; Moghaddam GK; Amini F Bioorg Med Chem; 2007 Apr; 15(8):3097-101. PubMed ID: 17293117 [TBL] [Abstract][Full Text] [Related]
19. Catalytic Aerobic Oxidation of Alcohols by Copper Complexes Bearing Redox-Active Ligands with Tunable H-Bonding Groups. Rajabimoghadam K; Darwish Y; Bashir U; Pitman D; Eichelberger S; Siegler MA; Swart M; Garcia-Bosch I J Am Chem Soc; 2018 Dec; 140(48):16625-16634. PubMed ID: 30400740 [TBL] [Abstract][Full Text] [Related]
20. Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2 degrees Adh) as a bifunctional alcohol dehydrogenase--acetyl-CoA reductive thioesterase. Burdette D; Zeikus JG Biochem J; 1994 Aug; 302 ( Pt 1)(Pt 1):163-70. PubMed ID: 8068002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]