These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 35796892)
1. Metal fluxes at the sediment-water interface in a free water surface constructed wetland. Xu X; Baddar ZE Environ Monit Assess; 2022 Jul; 194(8):571. PubMed ID: 35796892 [TBL] [Abstract][Full Text] [Related]
2. Sink or source? Insights into the behavior of copper and zinc in the sediment porewater of a constructed wetland by peepers. Qin C; Xu X; Peck E Sci Total Environ; 2022 May; 821():153127. PubMed ID: 35051472 [TBL] [Abstract][Full Text] [Related]
3. Metal Removal by a Free Surface Constructed Wetland and Prediction of Metal Bioavailability and Toxicity with Diffusive Gradients in Thin Films (DGT) and Biotic Ligand Model (BLM). Qin C; Xu X; Peck E Environ Manage; 2022 May; 69(5):994-1004. PubMed ID: 34811569 [TBL] [Abstract][Full Text] [Related]
4. In situ high-resolution two-dimensional profiles of redox sensitive metal mobility in sediment-water interface and porewater from estuarine sediments. Liu W; Lu G; Wang WX Sci Total Environ; 2022 May; 820():153034. PubMed ID: 35065125 [TBL] [Abstract][Full Text] [Related]
5. Effects of wetland types on dynamics and couplings of labile phosphorus, iron and sulfur in coastal wetlands during growing season. Hu M; Sardans J; Le Y; Yan R; Zhong Y; Peñuelas J Sci Total Environ; 2022 Jul; 830():154460. PubMed ID: 35278550 [TBL] [Abstract][Full Text] [Related]
6. Biogeochemical behavior of P in the soil and porewater of a low-salinity estuarine wetland: Availability, diffusion kinetics, and mobilization mechanism. Hu M; Sardans J; Le Y; Yan R; Zhong Y; Huang J; Peñuelas J; Tong C Water Res; 2022 Jul; 219():118617. PubMed ID: 35605392 [TBL] [Abstract][Full Text] [Related]
7. Spatiotemporal Changes in Trace Metal Bioavailability in the Sediment Pore water of a Constructed Wetland Using Passive Pore water Samplers. Elhaj Baddar Z; Xu X; Spencer B Environ Toxicol Chem; 2023 Dec; 42(12):2726-2736. PubMed ID: 37671844 [TBL] [Abstract][Full Text] [Related]
8. Mobilization mechanisms and toxicity risk of sediment trace metals (Cu, Zn, Ni, and Pb) based on diffusive gradients in thin films: A case study in the Xizhi River basin, South China. Gao L; Li R; Liang Z; Wu Q; Yang Z; Li M; Chen J; Hou L J Hazard Mater; 2021 May; 410():124590. PubMed ID: 33234397 [TBL] [Abstract][Full Text] [Related]
9. Removal, distribution and retention of metals in a constructed wetland over 20 years. Knox AS; Paller MH; Seaman JC; Mayer J; Nicholson C Sci Total Environ; 2021 Nov; 796():149062. PubMed ID: 34328902 [TBL] [Abstract][Full Text] [Related]
10. Limitations of Applying Diffusive Gradients in Thin Films to Predict Bioavailability of Metal Mixtures in Aquatic Systems with Unstable Water Chemistries. Xu X; Peck E; Fletcher DE; Korotasz A; Perry J Environ Toxicol Chem; 2020 Dec; 39(12):2485-2495. PubMed ID: 32845529 [TBL] [Abstract][Full Text] [Related]
11. Do constructed wetlands remove metals or increase metal bioavailability? Xu X; Mills GL J Environ Manage; 2018 Jul; 218():245-255. PubMed ID: 29680756 [TBL] [Abstract][Full Text] [Related]
12. Seasonal Sulfur Redox Cycling in Two Constructed Wetlands with Insight on How They Age. Lindelien CM; Xu X; Knox AS; Peck E Bull Environ Contam Toxicol; 2024 Aug; 113(3):34. PubMed ID: 39214906 [TBL] [Abstract][Full Text] [Related]
13. Biogeochemistry at a wetland sediment-alluvial aquifer interface in a landfill leachate plume. Lorah MM; Cozzarelli IM; Böhlke JK J Contam Hydrol; 2009 Apr; 105(3-4):99-117. PubMed ID: 19136178 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of phosphorus release from sediments and its relationship with iron speciation influenced by the mussel (Corbicula fluminea) bioturbation. Chen M; Ding S; Liu L; Xu D; Gong M; Tang H; Zhang C Sci Total Environ; 2016 Jan; 542(Pt A):833-40. PubMed ID: 26556747 [TBL] [Abstract][Full Text] [Related]
15. Assessment of the labile fractions of copper and zinc in marinas and port areas in Southern Brazil. Costa LD; Wallner-Kersanach M Environ Monit Assess; 2013 Aug; 185(8):6767-81. PubMed ID: 23475526 [TBL] [Abstract][Full Text] [Related]
16. Temporal deposition of copper and zinc in the sediments of metal removal constructed wetlands. Elhaj Baddar Z; Peck E; Xu X PLoS One; 2021; 16(8):e0255527. PubMed ID: 34343201 [TBL] [Abstract][Full Text] [Related]
17. Metal/metalloid and phosphorus characteristics in porewater associated with manganese geochemistry: A case study in the Jiulong River Estuary, China. Pan F; Liu H; Guo Z; Cai Y; Fu Y; Wu J; Wang B; Gao A Environ Pollut; 2019 Dec; 255(Pt 1):113134. PubMed ID: 31520910 [TBL] [Abstract][Full Text] [Related]
18. Substantial increase in P release following conversion of coastal wetlands to aquaculture ponds from altered kinetic exchange and resupply capacity. Hu M; Sardans J; Yan R; Wu H; Ni R; Peñuelas J; Tong C Water Res; 2023 Feb; 230():119586. PubMed ID: 36638741 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of phosphorus-iron-sulfur at the sediment-water interface influenced by algae blooms decomposition. Han C; Ding S; Yao L; Shen Q; Zhu C; Wang Y; Xu D J Hazard Mater; 2015 Dec; 300():329-337. PubMed ID: 26207579 [TBL] [Abstract][Full Text] [Related]
20. Application of DGT/DIFS combined with BCR to assess the mobility and release risk of heavy metals in the sediments of Nansi Lake, China. Zhang M; Li C; Yang L; Ding S; Ma X; Zhang Y; Zhao T Environ Geochem Health; 2020 Nov; 42(11):3765-3778. PubMed ID: 32594418 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]