These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35796956)

  • 21. Programmed DNA deletions in Tetrahymena: mechanisms and implications.
    Yao MC
    Trends Genet; 1996 Jan; 12(1):26-30. PubMed ID: 8741857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phosphorylation of an HP1-like protein is a prerequisite for heterochromatin body formation in Tetrahymena DNA elimination.
    Kataoka K; Noto T; Mochizuki K
    Proc Natl Acad Sci U S A; 2016 Aug; 113(32):9027-32. PubMed ID: 27466409
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Boundary elements of the Tetrahymena telomerase RNA template and alignment domains.
    Autexier C; Greider CW
    Genes Dev; 1995 Sep; 9(18):2227-39. PubMed ID: 7557377
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Programmed Genome Rearrangements in Tetrahymena.
    Yao MC; Chao JL; Cheng CY
    Microbiol Spectr; 2014 Dec; 2(6):. PubMed ID: 26104448
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Germ line transcripts are processed by a Dicer-like protein that is essential for developmentally programmed genome rearrangements of Tetrahymena thermophila.
    Malone CD; Anderson AM; Motl JA; Rexer CH; Chalker DL
    Mol Cell Biol; 2005 Oct; 25(20):9151-64. PubMed ID: 16199890
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Histone H3 lysine 9 methylation is required for DNA elimination in developing macronuclei in Tetrahymena.
    Liu Y; Mochizuki K; Gorovsky MA
    Proc Natl Acad Sci U S A; 2004 Feb; 101(6):1679-84. PubMed ID: 14755052
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequence, biogenesis, and function of diverse small RNA classes bound to the Piwi family proteins of Tetrahymena thermophila.
    Couvillion MT; Lee SR; Hogstad B; Malone CD; Tonkin LA; Sachidanandam R; Hannon GJ; Collins K
    Genes Dev; 2009 Sep; 23(17):2016-32. PubMed ID: 19656801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tetrahymena thermophila JMJD3 homolog regulates H3K27 methylation and nuclear differentiation.
    Chung PH; Yao MC
    Eukaryot Cell; 2012 May; 11(5):601-14. PubMed ID: 22427430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Parental expression of the chromodomain protein Pdd1p is required for completion of programmed DNA elimination and nuclear differentiation.
    Coyne RS; Nikiforov MA; Smothers JF; Allis CD; Yao MC
    Mol Cell; 1999 Nov; 4(5):865-72. PubMed ID: 10619033
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The germ line limited M element of Tetrahymena is targeted for elimination from the somatic genome by a homology-dependent mechanism.
    Kowalczyk CA; Anderson AM; Arce-Larreta M; Chalker DL
    Nucleic Acids Res; 2006; 34(20):5778-89. PubMed ID: 17053100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A growth-essential Tetrahymena Piwi protein carries tRNA fragment cargo.
    Couvillion MT; Sachidanandam R; Collins K
    Genes Dev; 2010 Dec; 24(24):2742-7. PubMed ID: 21106669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two Sets of Piwi Proteins Are Involved in Distinct sRNA Pathways Leading to Elimination of Germline-Specific DNA.
    Furrer DI; Swart EC; Kraft MF; Sandoval PY; Nowacki M
    Cell Rep; 2017 Jul; 20(2):505-520. PubMed ID: 28700949
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Parallel evolution of histophagy in ciliates of the genus Tetrahymena.
    StrĂ¼der-Kypke MC; Wright AD; Jerome CA; Lynn DH
    BMC Evol Biol; 2001; 1():5. PubMed ID: 11701089
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of new dynein heavy-chain genes by RNA-directed polymerase chain reaction.
    Asai DJ; Criswell PG
    Methods Cell Biol; 1995; 47():579-85. PubMed ID: 7476548
    [No Abstract]   [Full Text] [Related]  

  • 35. Molecular biology. An RNA-guided pathway for the epigenome.
    Jenuwein T
    Science; 2002 Sep; 297(5590):2215-8. PubMed ID: 12351775
    [No Abstract]   [Full Text] [Related]  

  • 36. RNA-guided DNA deletion in Tetrahymena: an RNAi-based mechanism for programmed genome rearrangements.
    Yao MC; Chao JL
    Annu Rev Genet; 2005; 39():537-59. PubMed ID: 16285871
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Small RNAs in genome rearrangement in Tetrahymena.
    Mochizuki K; Gorovsky MA
    Curr Opin Genet Dev; 2004 Apr; 14(2):181-7. PubMed ID: 15196465
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A domesticated PiggyBac transposase interacts with heterochromatin and catalyzes reproducible DNA elimination in Tetrahymena.
    Vogt A; Mochizuki K
    PLoS Genet; 2013; 9(12):e1004032. PubMed ID: 24348275
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeted Gene Disruption by Ectopic Induction of DNA Elimination in Tetrahymena.
    Hayashi A; Mochizuki K
    Genetics; 2015 Sep; 201(1):55-64. PubMed ID: 26205990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intracellular folding of the Tetrahymena group I intron depends on exon sequence and promoter choice.
    Koduvayur SP; Woodson SA
    RNA; 2004 Oct; 10(10):1526-32. PubMed ID: 15337845
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.