BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35797269)

  • 1. Interaction of immune checkpoint PD-1 and chemokine receptor 4 (CXCR4) promotes a malignant phenotype in pancreatic cancer cells.
    Harper MM; Lin M; Cavnar MJ; Pandalai PK; Patel RA; Gao M; Kim J
    PLoS One; 2022; 17(7):e0270832. PubMed ID: 35797269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CXCR4-CXCL12-CXCR7 and PD-1/PD-L1 in Pancreatic Cancer: CXCL12 Predicts Survival of Radically Resected Patients.
    D'Alterio C; Giardino A; Scognamiglio G; Butturini G; Portella L; Guardascione G; Frigerio I; Montella M; Gobbo S; Martignoni G; Napolitano V; De Vita F; Tatangelo F; Franco R; Scala S
    Cells; 2022 Oct; 11(21):. PubMed ID: 36359736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immune Checkpoint Inhibition for Pancreatic Ductal Adenocarcinoma: Current Limitations and Future Options.
    Kabacaoglu D; Ciecielski KJ; Ruess DA; Algül H
    Front Immunol; 2018; 9():1878. PubMed ID: 30158932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression and role of the immune checkpoint regulator PD-L1 in the tumor-stroma interplay of pancreatic ductal adenocarcinoma.
    Daunke T; Beckinger S; Rahn S; Krüger S; Heckl S; Schäfer H; Wesch D; Pilarsky C; Eckstein M; Hartmann A; Röcken C; Wandmacher AM; Sebens S
    Front Immunol; 2023; 14():1157397. PubMed ID: 37449210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual Stromal Targeting Sensitizes Pancreatic Adenocarcinoma for Anti-Programmed Cell Death Protein 1 Therapy.
    Blair AB; Wang J; Davelaar J; Baker A; Li K; Niu N; Wang J; Shao Y; Funes V; Li P; Pachter JA; Maneval DC; Dezem F; Plummer J; Chan KS; Gong J; Hendifar AE; Pandol SJ; Burkhart R; Zhang Y; Zheng L; Osipov A
    Gastroenterology; 2022 Nov; 163(5):1267-1280.e7. PubMed ID: 35718227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-omic Characterization of Pancreatic Ductal Adenocarcinoma Relates CXCR4 mRNA Expression Levels to Potential Clinical Targets.
    Kocher F; Puccini A; Untergasser G; Martowicz A; Zimmer K; Pircher A; Baca Y; Xiu J; Haybaeck J; Tymoszuk P; Goldberg RM; Petrillo A; Shields AF; Salem ME; Marshall JL; Hall M; Korn WM; Nabhan C; Battaglin F; Lenz HJ; Lou E; Choo SP; Toh CK; Gasteiger S; Pichler R; Wolf D; Seeber A
    Clin Cancer Res; 2022 Nov; 28(22):4957-4967. PubMed ID: 36112544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response.
    Biasci D; Smoragiewicz M; Connell CM; Wang Z; Gao Y; Thaventhiran JED; Basu B; Magiera L; Johnson TI; Bax L; Gopinathan A; Isherwood C; Gallagher FA; Pawula M; Hudecova I; Gale D; Rosenfeld N; Barmpounakis P; Popa EC; Brais R; Godfrey E; Mir F; Richards FM; Fearon DT; Janowitz T; Jodrell DI
    Proc Natl Acad Sci U S A; 2020 Nov; 117(46):28960-28970. PubMed ID: 33127761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CXCR4 in Tumor Epithelial Cells Mediates Desmoplastic Reaction in Pancreatic Ductal Adenocarcinoma.
    Morita T; Kodama Y; Shiokawa M; Kuriyama K; Marui S; Kuwada T; Sogabe Y; Matsumori T; Kakiuchi N; Tomono T; Mima A; Ueda T; Tsuda M; Yamauchi Y; Nishikawa Y; Sakuma Y; Ota Y; Maruno T; Uza N; Nagasawa T; Chiba T; Seno H
    Cancer Res; 2020 Oct; 80(19):4058-4070. PubMed ID: 32606001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The nanobody targeting PD-L1 and CXCR4 counteracts pancreatic stellate cell-mediated tumour progression by disrupting tumour microenvironment.
    Li Y; Zheng Y; Xu S; Hu H; Peng L; Zhu J; Wu M
    Int Immunopharmacol; 2024 May; 132():111944. PubMed ID: 38581990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment.
    Zeng Y; Li B; Liang Y; Reeves PM; Qu X; Ran C; Liu Q; Callahan MV; Sluder AE; Gelfand JA; Chen H; Poznansky MC
    FASEB J; 2019 May; 33(5):6596-6608. PubMed ID: 30802149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinicopathological significance and prognostic role of chemokine receptor CXCR4 expression in pancreatic ductal adenocarcinoma, a meta-analysis and literature review.
    Ding Y; Du Y
    Int J Surg; 2019 May; 65():32-38. PubMed ID: 30902754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparison of Spatial and Phenotypic Immune Profiles of Pancreatic Ductal Adenocarcinoma and Its Precursor Lesions.
    Enzler T; Shi J; McGue J; Griffith BD; Sun L; Sahai V; Nathan H; Frankel TL
    Int J Mol Sci; 2024 Mar; 25(5):. PubMed ID: 38474199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-pancreatic tumor efficacy of a Listeria-based, Annexin A2-targeting immunotherapy in combination with anti-PD-1 antibodies.
    Kim VM; Blair AB; Lauer P; Foley K; Che X; Soares K; Xia T; Muth ST; Kleponis J; Armstrong TD; Wolfgang CL; Jaffee EM; Brockstedt D; Zheng L
    J Immunother Cancer; 2019 May; 7(1):132. PubMed ID: 31113479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mobilization of CD8
    Seo YD; Jiang X; Sullivan KM; Jalikis FG; Smythe KS; Abbasi A; Vignali M; Park JO; Daniel SK; Pollack SM; Kim TS; Yeung R; Crispe IN; Pierce RH; Robins H; Pillarisetty VG
    Clin Cancer Res; 2019 Jul; 25(13):3934-3945. PubMed ID: 30940657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: the COMBAT trial.
    Bockorny B; Semenisty V; Macarulla T; Borazanci E; Wolpin BM; Stemmer SM; Golan T; Geva R; Borad MJ; Pedersen KS; Park JO; Ramirez RA; Abad DG; Feliu J; Muñoz A; Ponz-Sarvise M; Peled A; Lustig TM; Bohana-Kashtan O; Shaw SM; Sorani E; Chaney M; Kadosh S; Vainstein Haras A; Von Hoff DD; Hidalgo M
    Nat Med; 2020 Jun; 26(6):878-885. PubMed ID: 32451495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue-resident CXCR4
    Liao Z; Ye L; Li T; Jin X; Lin X; Fei Q; Zhang H; Shi S; Yu X; Jin K; Wu W
    Int J Cancer; 2023 Jun; 152(11):2396-2409. PubMed ID: 36757203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macrophage-Derived Granulin Drives Resistance to Immune Checkpoint Inhibition in Metastatic Pancreatic Cancer.
    Quaranta V; Rainer C; Nielsen SR; Raymant ML; Ahmed MS; Engle DD; Taylor A; Murray T; Campbell F; Palmer DH; Tuveson DA; Mielgo A; Schmid MC
    Cancer Res; 2018 Aug; 78(15):4253-4269. PubMed ID: 29789416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice.
    Chen Y; Ramjiawan RR; Reiberger T; Ng MR; Hato T; Huang Y; Ochiai H; Kitahara S; Unan EC; Reddy TP; Fan C; Huang P; Bardeesy N; Zhu AX; Jain RK; Duda DG
    Hepatology; 2015 May; 61(5):1591-602. PubMed ID: 25529917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gut-derived lipopolysaccharide remodels tumoral microenvironment and synergizes with PD-L1 checkpoint blockade via TLR4/MyD88/AKT/NF-κB pathway in pancreatic cancer.
    Yin H; Pu N; Chen Q; Zhang J; Zhao G; Xu X; Wang D; Kuang T; Jin D; Lou W; Wu W
    Cell Death Dis; 2021 Oct; 12(11):1033. PubMed ID: 34718325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat Shock Protein-90 Inhibition Alters Activation of Pancreatic Stellate Cells and Enhances the Efficacy of PD-1 Blockade in Pancreatic Cancer.
    Zhang Y; Ware MB; Zaidi MY; Ruggieri AN; Olson BM; Komar H; Farren MR; Nagaraju GP; Zhang C; Chen Z; Sarmiento JM; Ahmed R; Maithel SK; El-Rayes BF; Lesinski GB
    Mol Cancer Ther; 2021 Jan; 20(1):150-160. PubMed ID: 33037138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.