BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35797429)

  • 41. Site-Specific Mapping of Sialic Acid Linkage Isomers by Ion Mobility Spectrometry.
    Guttman M; Lee KK
    Anal Chem; 2016 May; 88(10):5212-7. PubMed ID: 27089023
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Trapped ion mobility spectrometry time-of-flight mass spectrometry for high throughput and high resolution characterization of human milk oligosaccharide isomers.
    Delvaux A; Rathahao-Paris E; Guillon B; Cholet S; Adel-Patient K; Fenaille F; Junot C; Alves S
    Anal Chim Acta; 2021 Oct; 1180():338878. PubMed ID: 34538323
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cryogenic IR spectroscopy combined with ion mobility spectrometry for the analysis of human milk oligosaccharides.
    Khanal N; Masellis C; Kamrath MZ; Clemmer DE; Rizzo TR
    Analyst; 2018 Apr; 143(8):1846-1852. PubMed ID: 29541730
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Resolving Isomeric Structures of Native Glycans by Nanoflow Porous Graphitized Carbon Chromatography-Mass Spectrometry.
    She YM; Tam RY; Li X; Rosu-Myles M; Sauvé S
    Anal Chem; 2020 Oct; 92(20):14038-14046. PubMed ID: 32960038
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multistage Ion Mobility Spectrometry Combined with Infrared Spectroscopy for Glycan Analysis.
    Bansal P; Ben Faleh A; Warnke S; Rizzo TR
    J Am Soc Mass Spectrom; 2023 Apr; 34(4):695-700. PubMed ID: 36881006
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Toward High-Throughput Cryogenic IR Fingerprinting of Mobility-Separated Glycan Isomers.
    Warnke S; Ben Faleh A; Rizzo TR
    ACS Meas Sci Au; 2021 Dec; 1(3):157-164. PubMed ID: 34939078
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Applications of ion mobility mass spectrometry for high throughput, high resolution glycan analysis.
    Gray CJ; Thomas B; Upton R; Migas LG; Eyers CE; Barran PE; Flitsch SL
    Biochim Biophys Acta; 2016 Aug; 1860(8):1688-709. PubMed ID: 26854953
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Discrimination of isomeric monosaccharide derivatives using collision-induced fingerprinting coupled to ion mobility mass spectrometry.
    Wu X; Zhang Y; Qin R; Li P; Wen Y; Yin Z; Zhang Z; Xu H
    Talanta; 2021 Mar; 224():121901. PubMed ID: 33379106
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Broad Separation of Isomeric Lipids by High-Resolution Differential Ion Mobility Spectrometry with Tandem Mass Spectrometry.
    Bowman AP; Abzalimov RR; Shvartsburg AA
    J Am Soc Mass Spectrom; 2017 Aug; 28(8):1552-1561. PubMed ID: 28462493
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Combination of High-Resolution Multistage Ion Mobility and Tandem MS with High Energy of Activation to Resolve the Structure of Complex Chemoenzymatically Synthesized Glycans.
    Ropartz D; Fanuel M; Ollivier S; Lissarrague A; Benkoulouche M; Mulard LA; André I; Guieysse D; Rogniaux H
    Anal Chem; 2022 Feb; 94(4):2279-2287. PubMed ID: 35049286
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An improved algorithm for resolving overlapping peaks in ion mobility spectrometry and its application to the separation of glycan isomers.
    Hu X; Zhou J; Li J; Gao W; Zhou J; Yu J; Tang K
    Analyst; 2023 Oct; 148(21):5514-5524. PubMed ID: 37791632
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Using a Cyclic Ion Mobility Spectrometer for Tandem Ion Mobility Experiments.
    Ollivier S; Fanuel M; Rogniaux H; Ropartz D
    J Vis Exp; 2022 Jan; (179):. PubMed ID: 35129180
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Travelling-wave ion mobility and negative ion fragmentation of high-mannose N-glycans.
    Harvey DJ; Scarff CA; Edgeworth M; Struwe WB; Pagel K; Thalassinos K; Crispin M; Scrivens J
    J Mass Spectrom; 2016 Mar; 51(3):219-35. PubMed ID: 26956389
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ion-Mobility Spectrometry Can Assign Exact Fucosyl Positions in Glycans and Prevent Misinterpretation of Mass-Spectrometry Data After Gas-Phase Rearrangement.
    Sastre Toraño J; Gagarinov IA; Vos GM; Broszeit F; Srivastava AD; Palmer M; Langridge JI; Aizpurua-Olaizola O; Somovilla VJ; Boons GJ
    Angew Chem Int Ed Engl; 2019 Dec; 58(49):17616-17620. PubMed ID: 31544998
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fragmentation and ion mobility properties of negative ions from N-linked carbohydrates: Part 7. Reduced glycans.
    Harvey DJ; Abrahams JL
    Rapid Commun Mass Spectrom; 2016 Mar; 30(5):627-34. PubMed ID: 26842584
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Discrimination of isomeric trisaccharides and their relative quantification in honeys using trapped ion mobility spectrometry.
    Przybylski C; Bonnet V
    Food Chem; 2021 Mar; 341(Pt 1):128182. PubMed ID: 33032254
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification and quantification of bipyridyl dicarboxylic acid isomers by ion mobility spectrometry.
    Ye J; Du J; Wang B; Yan Y; Ding CF
    J Chromatogr A; 2024 Jan; 1715():464630. PubMed ID: 38184990
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanoscale reversed-phase liquid chromatography-mass spectrometry of permethylated N-glycans.
    Ritamo I; Räbinä J; Natunen S; Valmu L
    Anal Bioanal Chem; 2013 Mar; 405(8):2469-80. PubMed ID: 23307132
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mass spectrometry hybridized with gas-phase InfraRed spectroscopy for glycan sequencing.
    Gray CJ; Compagnon I; Flitsch SL
    Curr Opin Struct Biol; 2020 Jun; 62():121-131. PubMed ID: 31981952
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Precise Structural Analysis of Neutral Glycans Using Aerolysin Mutant T240R Nanopore.
    Lu W; Zhao X; Li M; Li Y; Zhang C; Xiong Y; Li J; Zhou H; Ye X; Li X; Wang J; Liang X; Qing G
    ACS Nano; 2024 May; 18(19):12412-12426. PubMed ID: 38693619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.