These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35797661)

  • 1. Impact of dipole-dipole interactions on motility-induced phase separation.
    Sesé-Sansa E; Liao GJ; Levis D; Pagonabarraga I; Klapp SHL
    Soft Matter; 2022 Jul; 18(29):5388-5401. PubMed ID: 35797661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergent vortices and phase separation in systems of chiral active particles with dipolar interactions.
    Liao GJ; Klapp SHL
    Soft Matter; 2021 Jul; 17(28):6833-6847. PubMed ID: 34223596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamical self-assembly of dipolar active Brownian particles in two dimensions.
    Liao GJ; Hall CK; Klapp SHL
    Soft Matter; 2020 Mar; 16(9):2208-2223. PubMed ID: 32090218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles.
    Speck T; Menzel AM; Bialké J; Löwen H
    J Chem Phys; 2015 Jun; 142(22):224109. PubMed ID: 26071703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of dipolar interactions on the magnetic susceptibility spectra of ferrofluids.
    Sindt JO; Camp PJ; Kantorovich SS; Elfimova EA; Ivanov AO
    Phys Rev E; 2016 Jun; 93(6):063117. PubMed ID: 27415368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling a nano-particle with isothermal fluctuating hydrodynamics: Coarse-graining from microscopic to mesoscopic dynamics.
    Español P; Donev A
    J Chem Phys; 2015 Dec; 143(23):234104. PubMed ID: 26696043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase separation of self-propelled disks with ferromagnetic and nematic alignment.
    Sesé-Sansa E; Levis D; Pagonabarraga I
    Phys Rev E; 2021 Nov; 104(5-1):054611. PubMed ID: 34942723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive local field theory for interacting active Brownian spheres in two spatial dimensions.
    Bickmann J; Wittkowski R
    J Phys Condens Matter; 2020 May; 32(21):214001. PubMed ID: 31791019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamical clustering interrupts motility-induced phase separation in chiral active Brownian particles.
    Ma Z; Ni R
    J Chem Phys; 2022 Jan; 156(2):021102. PubMed ID: 35032980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized Langevin dynamics: construction and numerical integration of non-Markovian particle-based models.
    Jung G; Hanke M; Schmid F
    Soft Matter; 2018 Nov; 14(46):9368-9382. PubMed ID: 30427043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Many-particle Brownian and Langevin Dynamics Simulations with the Brownmove package.
    Geyer T
    BMC Biophys; 2011 Apr; 4():7. PubMed ID: 21596002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuum theory of phase separation kinetics for active Brownian particles.
    Stenhammar J; Tiribocchi A; Allen RJ; Marenduzzo D; Cates ME
    Phys Rev Lett; 2013 Oct; 111(14):145702. PubMed ID: 24138255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-principle approach to rescale the dynamics of simulated coarse-grained macromolecular liquids.
    Lyubimov I; Guenza MG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031801. PubMed ID: 22060394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic interactions and Brownian forces in colloidal suspensions: coarse-graining over time and length scales.
    Padding JT; Louis AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031402. PubMed ID: 17025630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscopic field theory for structure formation in systems of self-propelled particles with generic torques.
    Sesé-Sansa E; Levis D; Pagonabarraga I
    J Chem Phys; 2022 Dec; 157(22):224905. PubMed ID: 36546814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotating colloids in rotating magnetic fields: Dipolar relaxation and hydrodynamic coupling.
    Coughlan AC; Bevan MA
    Phys Rev E; 2016 Oct; 94(4-1):042613. PubMed ID: 27841476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clustering of microswimmers: interplay of shape and hydrodynamics.
    Theers M; Westphal E; Qi K; Winkler RG; Gompper G
    Soft Matter; 2018 Oct; 14(42):8590-8603. PubMed ID: 30339172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical coarse-graining approach to bridge length scales in diblock copolymer liquids.
    Sambriski EJ; Guenza MG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051801. PubMed ID: 18233675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.