These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35797717)

  • 41. Metal Triflates for the Production of Aromatics from Lignin.
    Deuss PJ; Lahive CW; Lancefield CS; Westwood NJ; Kamer PC; Barta K; de Vries JG
    ChemSusChem; 2016 Oct; 9(20):2974-2981. PubMed ID: 27650221
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanism of a chemical glycosylation reaction.
    Crich D
    Acc Chem Res; 2010 Aug; 43(8):1144-53. PubMed ID: 20496888
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pd(PPh(3))(4)/AgOAc-catalyzed coupling of 17-steroidal triflates and alkynes: Highly efficient synthesis of D-ring unsaturated 17-alkynylsteroids.
    Sun Q; Jiang C; Xu H; Zhang Z; Liu L; Wang C
    Steroids; 2010 Dec; 75(12):936-43. PubMed ID: 20685217
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transition-Metal-Free N-Arylation of Amines by Triarylsulfonium Triflates.
    Tian ZY; Ming XX; Teng HB; Hu YT; Zhang CP
    Chemistry; 2018 Sep; 24(52):13744-13748. PubMed ID: 29979482
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A quantitative approach of the interaction between metal triflates and organic ligands using electrospray mass spectrometry.
    Gal JF; Iacobucci C; Monfardini I; Massi L; Duñach E; Olivero S
    J Am Soc Mass Spectrom; 2012 Dec; 23(12):2059-62. PubMed ID: 23055073
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ligand- and Solvent-Tuned Chemoselective Carbonylation of Bromoaryl Triflates.
    Shen C; Wei Z; Jiao H; Wu XF
    Chemistry; 2017 Sep; 23(54):13369-13378. PubMed ID: 28650074
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Covalent triflates as synthons for silolyl- and germolyl cations.
    Wohltmann WM; Schmidtmann M; Müller T
    Dalton Trans; 2022 Jun; 51(25):9836-9842. PubMed ID: 35708108
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pd-Catalyzed Carbonylation of Vinyl Triflates To Afford α,β-Unsaturated Aldehydes, Esters, and Amides under Mild Conditions.
    Zhang S; Neumann H; Beller M
    Org Lett; 2019 May; 21(10):3528-3532. PubMed ID: 31045375
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Studying regioisomer formation in the Pd-catalyzed fluorination of aryl triflates by deuterium labeling.
    Milner PJ; Kinzel T; Zhang Y; Buchwald SL
    J Am Chem Soc; 2014 Nov; 136(44):15757-66. PubMed ID: 25299957
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A General, Simple Catalyst for Enantiospecific Cross Couplings of Benzylic Ammonium Triflates and Boronic Acids: No Phosphine Ligand Required.
    Shacklady-McAtee DM; Roberts KM; Basch CH; Song YG; Watson MP
    Tetrahedron; 2014 Jul; 70(27-28):4257-4263. PubMed ID: 25364060
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthetic carbohydrate research based on organic electrochemistry.
    Nokami T; Saito K; Yoshida J
    Carbohydr Res; 2012 Dec; 363():1-6. PubMed ID: 23089173
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An improved palladium-catalyzed conversion of aryl and vinyl triflates to bromides and chlorides.
    Pan J; Wang X; Zhang Y; Buchwald SL
    Org Lett; 2011 Sep; 13(18):4974-6. PubMed ID: 21863838
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 1,2-Bis(arylthio)arene synthesis via aryne intermediates.
    Mesgar M; Nguyen-Le J; Daugulis O
    Chem Commun (Camb); 2019 Aug; 55(64):9467-9470. PubMed ID: 31328188
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nickel-Catalyzed Reductive Vinylation of Chloro-hexahydropyrroloindoline Derivatives with Vinyl Triflates.
    Su L; Ma G; Song Y; Gong H
    Org Lett; 2021 Apr; 23(7):2493-2497. PubMed ID: 33733789
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The First Example of Nickel-Catalyzed Silyl-Heck Reactions: Direct Activation of Silyl Triflates Without Iodide Additives.
    McAtee JR; Martin SE; Cinderella AP; Reid WB; Johnson KA; Watson DA
    Tetrahedron; 2014 Jul; 70(27-28):4250-4256. PubMed ID: 24914247
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Baeyer-Villiger rearrangement with metal triflates: new developments toward mechanism.
    Latos P; Siewniak A; Sitko M; Chrobok A
    RSC Adv; 2020 Jun; 10(36):21382-21386. PubMed ID: 35518740
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Glycosyl sulfonium ions as storable intermediates for glycosylations.
    Nokami T; Nozaki Y; Saigusa Y; Shibuya A; Manabe S; Ito Y; Yoshida J
    Org Lett; 2011 Mar; 13(6):1544-7. PubMed ID: 21323371
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Memory of chirality in a room temperature flow electrochemical reactor.
    Hardwick T; Cicala R; Wirth T; Ahmed N
    Sci Rep; 2020 Oct; 10(1):16627. PubMed ID: 33024244
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 1-Benzenesulfinyl piperidine/trifluoromethanesulfonic anhydride: a potent combination of shelf-stable reagents for the low-temperature conversion of thioglycosides to glycosyl triflates and for the formation of diverse glycosidic linkages.
    Crich D; Smith M
    J Am Chem Soc; 2001 Sep; 123(37):9015-20. PubMed ID: 11552809
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nickel-catalyzed Kumada cross-coupling reactions of tertiary alkylmagnesium halides and aryl bromides/triflates.
    Joshi-Pangu A; Wang CY; Biscoe MR
    J Am Chem Soc; 2011 Jun; 133(22):8478-81. PubMed ID: 21553878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.