These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 35797871)
1. Engineering manganese ferrite shell on iron oxide nanoparticles for enhanced T Li M; Bao J; Zeng J; Huo L; Shan X; Cheng X; Qiu D; Miao W; Zhu X; Huang G; Ni K; Zhao Z J Colloid Interface Sci; 2022 Nov; 626():364-373. PubMed ID: 35797871 [TBL] [Abstract][Full Text] [Related]
2. Synthesis Of PEG-Coated, Ultrasmall, Manganese-Doped Iron Oxide Nanoparticles With High Relaxivity For T Xiao S; Yu X; Zhang L; Zhang Y; Fan W; Sun T; Zhou C; Liu Y; Liu Y; Gong M; Zhang D Int J Nanomedicine; 2019; 14():8499-8507. PubMed ID: 31695377 [TBL] [Abstract][Full Text] [Related]
3. Composition-Tunable Ultrasmall Manganese Ferrite Nanoparticles: Insights into their Miao Y; Xie Q; Zhang H; Cai J; Liu X; Jiao J; Hu S; Ghosal A; Yang Y; Fan H Theranostics; 2019; 9(6):1764-1776. PubMed ID: 31037137 [TBL] [Abstract][Full Text] [Related]
4. Ultrasmall Ferrite Nanoparticles Synthesized via Dynamic Simultaneous Thermal Decomposition for High-Performance and Multifunctional T Zhang H; Li L; Liu XL; Jiao J; Ng CT; Yi JB; Luo YE; Bay BH; Zhao LY; Peng ML; Gu N; Fan HM ACS Nano; 2017 Apr; 11(4):3614-3631. PubMed ID: 28371584 [TBL] [Abstract][Full Text] [Related]
5. CXC Chemokine Receptor 4 Antagonist Functionalized Renal Clearable Manganese-Doped Iron Oxide Nanoparticles for Active-Tumor-Targeting Magnetic Resonance Imaging-Guided Bio-Photothermal Therapy. Fu Y; Li X; Chen H; Wang Z; Yang W; Zhang H ACS Appl Bio Mater; 2019 Aug; 2(8):3613-3621. PubMed ID: 35030748 [TBL] [Abstract][Full Text] [Related]
6. Tunable T1 and T2 contrast abilities of manganese-engineered iron oxide nanoparticles through size control. Huang G; Li H; Chen J; Zhao Z; Yang L; Chi X; Chen Z; Wang X; Gao J Nanoscale; 2014 Sep; 6(17):10404-12. PubMed ID: 25079966 [TBL] [Abstract][Full Text] [Related]
7. Improving Longitudinal Transversal Relaxation Of Gadolinium Chelate Using Silica Coating Magnetite Nanoparticles. Xu K; Liu H; Zhang J; Tong H; Zhao Z; Zhang W Int J Nanomedicine; 2019; 14():7879-7889. PubMed ID: 31576129 [TBL] [Abstract][Full Text] [Related]
8. The Roles of Morphology on the Relaxation Rates of Magnetic Nanoparticles. Yang L; Wang Z; Ma L; Li A; Xin J; Wei R; Lin H; Wang R; Chen Z; Gao J ACS Nano; 2018 May; 12(5):4605-4614. PubMed ID: 29672022 [TBL] [Abstract][Full Text] [Related]
9. Mesoporous manganese silicate coated silica nanoparticles as multi-stimuli-responsive T1-MRI contrast agents and drug delivery carriers. Li X; Zhao W; Liu X; Chen K; Zhu S; Shi P; Chen Y; Shi J Acta Biomater; 2016 Jan; 30():378-387. PubMed ID: 26602820 [TBL] [Abstract][Full Text] [Related]
10. Targeting T1 and T2 dual modality enhanced magnetic resonance imaging of tumor vascular endothelial cells based on peptides-conjugated manganese ferrite nanomicelles. Gong M; Yang H; Zhang S; Yang Y; Zhang D; Li Z; Zou L Int J Nanomedicine; 2016; 11():4051-63. PubMed ID: 27578974 [TBL] [Abstract][Full Text] [Related]
11. Manganese doped iron oxide theranostic nanoparticles for combined T1 magnetic resonance imaging and photothermal therapy. Zhang M; Cao Y; Wang L; Ma Y; Tu X; Zhang Z ACS Appl Mater Interfaces; 2015 Mar; 7(8):4650-8. PubMed ID: 25672225 [TBL] [Abstract][Full Text] [Related]
12. Biomineralized iron oxide-polydopamine hybrid nanodots for contrast-enhanced Wang Z; Wang Y; Wang Y; Wei C; Deng Y; Chen H; Shen J; Ke H J Mater Chem B; 2021 Feb; 9(7):1781-1786. PubMed ID: 33594402 [TBL] [Abstract][Full Text] [Related]
13. Long-circulating PEGylated manganese ferrite nanoparticles for MRI-based molecular imaging. Pernia Leal M; Rivera-Fernández S; Franco JM; Pozo D; de la Fuente JM; García-Martín ML Nanoscale; 2015 Feb; 7(5):2050-9. PubMed ID: 25554363 [TBL] [Abstract][Full Text] [Related]
14. Iron oxide nanoparticles as positive T Oberdick SD; Jordanova KV; Lundstrom JT; Parigi G; Poorman ME; Zabow G; Keenan KE Sci Rep; 2023 Jul; 13(1):11520. PubMed ID: 37460669 [TBL] [Abstract][Full Text] [Related]
15. High-Performance Zhao D; Peng S; Xiao H; Li Q; Chai Y; Sun H; Liu R; Yao L; Ma L ACS Appl Bio Mater; 2023 Jun; 6(6):2137-2144. PubMed ID: 37229527 [TBL] [Abstract][Full Text] [Related]
16. Optimized Mn-doped iron oxide nanoparticles entrapped in dendrimer for dual contrasting role in MRI. Haribabu V; Farook AS; Goswami N; Murugesan R; Girigoswami A J Biomed Mater Res B Appl Biomater; 2016 May; 104(4):817-24. PubMed ID: 26460478 [TBL] [Abstract][Full Text] [Related]
17. Manganese-Based Magnetic Layered Double Hydroxide Nanoparticle: A pH-Sensitive and Concurrently Enhanced Xie W; Guo Z; Cao Z; Gao Q; Wang D; Boyer C; Kavallaris M; Sun X; Wang X; Zhao L; Gu Z ACS Biomater Sci Eng; 2019 May; 5(5):2555-2562. PubMed ID: 33405761 [TBL] [Abstract][Full Text] [Related]
18. One-pot preparation of hydrophilic manganese oxide nanoparticles as T Li J; Wu C; Hou P; Zhang M; Xu K Biosens Bioelectron; 2018 Apr; 102():1-8. PubMed ID: 29101783 [TBL] [Abstract][Full Text] [Related]
19. Disruptive chemical doping in a ferritin-based iron oxide nanoparticle to decrease r2 and enhance detection with T1-weighted MRI. Clavijo Jordan MV; Beeman SC; Baldelomar EJ; Bennett KM Contrast Media Mol Imaging; 2014; 9(5):323-32. PubMed ID: 24764110 [TBL] [Abstract][Full Text] [Related]
20. Water-soluble MnO nanocolloid for a molecular T1 MR imaging: a facile one-pot synthesis, in vivo T1 MR images, and account for relaxivities. Baek MJ; Park JY; Xu W; Kattel K; Kim HG; Lee EJ; Patel AK; Lee JJ; Chang Y; Kim TJ; Bae JE; Chae KS; Lee GH ACS Appl Mater Interfaces; 2010 Oct; 2(10):2949-55. PubMed ID: 20929249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]