These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 35797958)
21. Loss of Drosophila melanogaster TRPA1 Function Affects "Siesta" Behavior but Not Synchronization to Temperature Cycles. Roessingh S; Wolfgang W; Stanewsky R J Biol Rhythms; 2015 Dec; 30(6):492-505. PubMed ID: 26459465 [TBL] [Abstract][Full Text] [Related]
23. Regulation of circadian rhythm and sleep by miR-375-timeless interaction in Drosophila. Xia X; Fu X; Du J; Wu B; Zhao X; Zhu J; Zhao Z FASEB J; 2020 Dec; 34(12):16536-16551. PubMed ID: 33078445 [TBL] [Abstract][Full Text] [Related]
24. Fbxl4 Serves as a Clock Output Molecule that Regulates Sleep through Promotion of Rhythmic Degradation of the GABA Li Q; Li Y; Wang X; Qi J; Jin X; Tong H; Zhou Z; Zhang ZC; Han J Curr Biol; 2017 Dec; 27(23):3616-3625.e5. PubMed ID: 29174887 [TBL] [Abstract][Full Text] [Related]
29. The Drosophila circadian clock circuit is a nonhierarchical network of peptidergic oscillators. Crespo-Flores SL; Barber AF Curr Opin Insect Sci; 2022 Aug; 52():100944. PubMed ID: 35709899 [TBL] [Abstract][Full Text] [Related]
30. Dorsal clock networks drive temperature preference rhythms in Drosophila. Chen SC; Tang X; Goda T; Umezaki Y; Riley AC; Sekiguchi M; Yoshii T; Hamada FN Cell Rep; 2022 Apr; 39(2):110668. PubMed ID: 35417715 [TBL] [Abstract][Full Text] [Related]
31. Dynamic neuronal instability generates synaptic plasticity and behavior: Insights from Drosophila sleep. Tabuchi M Neurosci Res; 2024 Jan; 198():1-7. PubMed ID: 37385545 [TBL] [Abstract][Full Text] [Related]
32. Social Experience Is Sufficient to Modulate Sleep Need of Drosophila without Increasing Wakefulness. Lone SR; Potdar S; Srivastava M; Sharma VK PLoS One; 2016; 11(3):e0150596. PubMed ID: 26938057 [TBL] [Abstract][Full Text] [Related]
33. Circadian Rhythms and Sleep in Dubowy C; Sehgal A Genetics; 2017 Apr; 205(4):1373-1397. PubMed ID: 28360128 [TBL] [Abstract][Full Text] [Related]
34. High-Frequency Neuronal Bursting is Essential for Circadian and Sleep Behaviors in Fernandez-Chiappe F; Frenkel L; Colque CC; Ricciuti A; Hahm B; Cerredo K; Muraro NI; Ceriani MF J Neurosci; 2021 Jan; 41(4):689-710. PubMed ID: 33262246 [TBL] [Abstract][Full Text] [Related]
37. A Neural Network Underlying Circadian Entrainment and Photoperiodic Adjustment of Sleep and Activity in Drosophila. Schlichting M; Menegazzi P; Lelito KR; Yao Z; Buhl E; Dalla Benetta E; Bahle A; Denike J; Hodge JJ; Helfrich-Förster C; Shafer OT J Neurosci; 2016 Aug; 36(35):9084-96. PubMed ID: 27581451 [TBL] [Abstract][Full Text] [Related]
38. The lateral posterior clock neurons of Drosophila melanogaster express three neuropeptides and have multiple connections within the circadian clock network and beyond. Reinhard N; Bertolini E; Saito A; Sekiguchi M; Yoshii T; Rieger D; Helfrich-Förster C J Comp Neurol; 2022 Jun; 530(9):1507-1529. PubMed ID: 34961936 [TBL] [Abstract][Full Text] [Related]
39. Wakefulness Is Promoted during Day Time by PDFR Signalling to Dopaminergic Neurons in Drosophila melanogaster. Potdar S; Sheeba V eNeuro; 2018; 5(4):. PubMed ID: 30131970 [TBL] [Abstract][Full Text] [Related]
40. Molecular and Neural Mechanisms of Temperature Preference Rhythm in Goda T; Umezaki Y; Hamada FN J Biol Rhythms; 2023 Aug; 38(4):326-340. PubMed ID: 37222551 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]