BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35798034)

  • 1. Characterization of intrinsic molecular structure spectral profiles of feedstocks and co-products from canola bio-oil processing: impacted by source origin.
    de Oliveira AMRCB; Yu P
    Anim Biosci; 2023 Feb; 36(2):256-263. PubMed ID: 35798034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitation of relationship and development of nutrient prediction with vibrational molecular structure spectral profiles of feedstocks and co-products from canola bio-oil processing.
    de Oliveira AMRCB; Yu P
    Anim Biosci; 2023 Mar; 36(3):451-460. PubMed ID: 35798035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using ATR-FT/IR to detect carbohydrate-related molecular structure features of carinata meal and their in situ residues of ruminal fermentation in comparison with canola meal.
    Xin H; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():599-606. PubMed ID: 23807050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of physiochemical and nutrient profiles in canola feedstocks and co-products from bio-oil processing: impacted by source origin.
    de Oliveira AMRCB; Yu P
    Anim Biosci; 2023 Jul; 36(7):1044-1058. PubMed ID: 36915939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of FT/IR-ATR vibrational spectroscopy to reveal protein molecular structure of feedstock and co-products from Canadian and Chinese canola processing in relation to microorganism bio-degradation and enzyme bio-digestion.
    Gomaa WMS; Peng Q; Prates LL; Mosaad GM; Aamer H; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Nov; 204():791-797. PubMed ID: 30096732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibrational spectroscopic study on feed molecular structure properties of oil-seeds and co-products from Canadian and Chinese bio-processing and relationship with protein and carbohydrate degradation fractions in ruminant systems.
    Gomaa WMS; Zhang X; Deng H; Peng Q; Mosaad GM; Zhang H; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 216():249-257. PubMed ID: 30904632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research progress and future study on physicochemical, nutritional, and structural characteristics of canola and rapeseed feedstocks and co-products from bio-oil processing and nutrient modeling evaluation methods.
    Oliveira AMRCB; Yu P
    Crit Rev Food Sci Nutr; 2023; 63(23):6484-6490. PubMed ID: 35152796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On a Molecular Basis, Investigate Association of Molecular Structure with Bioactive Compounds, Anti-Nutritional Factors and Chemical and Nutrient Profiles of Canola Seeds and Co-Products from Canola Processing: Comparison Crusher Plants within Canada and within China as well as between Canada and China.
    Gomaa WMS; Mosaad GM; Yu P
    Nutrients; 2018 Apr; 10(4):. PubMed ID: 29690527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of ruminal degradation, intestinal digestion and total true nutrient supply to dairy cows from feedstocks and coproducts from Canola bio-oil processing: Impact by source origin.
    de Oliveira AMRCB; He J; Yu P
    J Anim Physiol Anim Nutr (Berl); 2024 May; 108(3):664-679. PubMed ID: 38223994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical profile, energy values, and protein molecular structure characteristics of biofuel/bio-oil co-products (carinata meal) in comparison with canola meal.
    Xin H; Yu P
    J Agric Food Chem; 2013 Apr; 61(16):3926-33. PubMed ID: 23581565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detect the sensitivity and response of protein molecular structure of whole canola seed (yellow and brown) to different heat processing methods and relation to protein utilization and availability using ATR-FT/IR molecular spectroscopy with chemometrics.
    Samadi ; Theodoridou K; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 105():304-13. PubMed ID: 23318774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular spectroscopic investigation on fractionation-induced changes on biomacromolecule of co-products from bioethanol processing to explore protein metabolism in ruminants.
    Zhang X; Yan X; Beltranena E; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Mar; 122():591-7. PubMed ID: 24334060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using vibrational ATR-FTIR spectroscopy with chemometrics to reveal faba CHO molecular spectral profile and CHO nutritional features in ruminant systems.
    Rahman MM; Feng X; Zhang H; Yan X; Peng Q; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 May; 214():269-276. PubMed ID: 30785047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using advanced vibrational molecular spectroscopy (ATR-Ft/IRS and synchrotron SR-IMS) to study an interaction between protein molecular structure from biodegradation residues and nutritional properties of cool-climate adapted faba bean seeds.
    Deng G; Rodríguez-Espinosa ME; Yan M; Lei Y; Guevara-Oquendo VH; Feng X; Zhang H; Deng H; Zhang W; Samadi ; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117935. PubMed ID: 31951940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-destructive analysis of the conformational differences among feedstock sources and their corresponding co-products from bioethanol production with molecular spectroscopy.
    Gamage IH; Jonker A; Zhang X; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():407-21. PubMed ID: 24076457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using a non-invasive technique in nutrition: synchrotron radiation infrared microspectroscopy spectroscopic characterization of oil seeds treated with different processing conditions on molecular spectral factors influencing nutrient delivery.
    Zhang X; Yu P
    J Agric Food Chem; 2014 Jul; 62(26):6199-205. PubMed ID: 24920208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application potential of ATR-FT/IR molecular spectroscopy in animal nutrition: revelation of protein molecular structures of canola meal and presscake, as affected by heat-processing methods, in relationship with their protein digestive behavior and utilization for dairy cattle.
    Theodoridou K; Yu P
    J Agric Food Chem; 2013 Jun; 61(23):5449-58. PubMed ID: 23683050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrational Molecular Spectroscopy as a Tool to Study Molecular Structure Features of Cool-Season Chickpeas Impacted by Varieties and Thermal Processing in Relation to Nutrient Availability in Ruminants.
    Cerna L; Espinosa MER; Zhang W; Yu P
    Animals (Basel); 2023 Jan; 13(2):. PubMed ID: 36670843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Mid-IR spectroscopy (ATR-FTIR) as a fast analytical tool to reveal association between protein spectral profiles and metabolizable protein supply, protein rumen degradation characteristics and estimated intestinal protein digestion before and after rumen incubation of faba bean partitions and faba bean silage.
    Yan M; Guevara-Oquendo VH; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 273():121022. PubMed ID: 35228082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of fermentation on protein profile of coffee by-products and its relationship with internal protein structure measured by vibrational spectroscopy.
    Samadi ; Feng X; Prates L; Wajizah S; Zulfahrizal ; Munawar AA; Yu P
    Anim Biosci; 2023 Aug; 36(8):1190-1198. PubMed ID: 37170514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.