These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35798703)

  • 1. CHST15 gene germline mutation is associated with the development of familial myeloproliferative neoplasms and higher transformation risk.
    Chen Y; Zhang Y; Wang Z; Wang Y; Luo Y; Sun N; Zheng S; Yan W; Xiao X; Liu S; Li J; Peng H; Xu Y; Hu G; Cheng Z; Zhang G
    Cell Death Dis; 2022 Jul; 13(7):586. PubMed ID: 35798703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ectopic PD-L1 expression in JAK2 (V617F) myeloproliferative neoplasm patients is mediated via increased activation of STAT3 and STAT5.
    Guru SA; Sumi MP; Mir R; Waza AA; Bhat MA; Zuberi M; Lali P; Saxena A
    Hum Cell; 2020 Oct; 33(4):1099-1111. PubMed ID: 32430672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of germline JAK2 activation mutation JAK2 V625F in the pathology of myeloproliferative neoplasms.
    Wu QY; Ma MM; Fu L; Zhu YY; Liu Y; Cao J; Zhou P; Li ZY; Zeng LY; Li F; Wang XY; Xu KL
    Int J Biol Macromol; 2018 Sep; 116():1064-1073. PubMed ID: 29782975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of IFN-α2b on COX-2 and Angiogenesis in JAK2V617F Mutation Myeloproliferative Neoplasms].
    Zhao YL; Zhang LJ; Fu JZ; Xu Q; Liu GM; Xie XL; Liang WT; Cheng ZY
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2016 Jul; 47(4):473-478. PubMed ID: 28591945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An inherited gain-of-function risk allele in EPOR predisposes to familial JAK2
    Rabadan Moraes G; Pasquier F; Marzac C; Deconinck E; Damanti CC; Leroy G; El-Khoury M; El Nemer W; Kiladjian JJ; Raslova H; Najman A; Vainchenker W; Marty C; Bellanné-Chantelot C; Plo I
    Br J Haematol; 2022 Jul; 198(1):131-136. PubMed ID: 35355248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis.
    Rampal R; Al-Shahrour F; Abdel-Wahab O; Patel JP; Brunel JP; Mermel CH; Bass AJ; Pretz J; Ahn J; Hricik T; Kilpivaara O; Wadleigh M; Busque L; Gilliland DG; Golub TR; Ebert BL; Levine RL
    Blood; 2014 May; 123(22):e123-33. PubMed ID: 24740812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic Vulnerabilities and Epigenetic Dysregulation in Myeloproliferative Neoplasms.
    Sharma V; Wright KL; Epling-Burnette PK; Reuther GW
    Front Immunol; 2020; 11():604142. PubMed ID: 33329600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Germline genetic factors in the pathogenesis of myeloproliferative neoplasms.
    Bellanné-Chantelot C; Rabadan Moraes G; Schmaltz-Panneau B; Marty C; Vainchenker W; Plo I
    Blood Rev; 2020 Jul; 42():100710. PubMed ID: 32532454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. JAK-mutant myeloproliferative neoplasms.
    Levine RL
    Curr Top Microbiol Immunol; 2012; 355():119-33. PubMed ID: 21823028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overview of Transgenic Mouse Models of Myeloproliferative Neoplasms (MPNs).
    Dunbar A; Nazir A; Levine R
    Curr Protoc Pharmacol; 2017 Jun; 77():14.40.1-14.40.19. PubMed ID: 28640953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel germline mutation KMT2A G3131S confers genetic susceptibility to familial myeloproliferative neoplasms.
    Yin L; Xie S; Chen Y; Li W; Jiang X; Li H; Li J; Wu Z; Xiao X; Zhang G; Cheng Z; Peng H
    Ann Hematol; 2021 Sep; 100(9):2229-2240. PubMed ID: 34228147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tyrosine-phosphorylated SOCS3 negatively regulates cellular transformation mediated by the myeloproliferative neoplasm-associated JAK2 V617F mutant.
    Funakoshi-Tago M; Tsuruya R; Ueda F; Ishihara A; Kasahara T; Tamura H; Tago K
    Cytokine; 2019 Nov; 123():154753. PubMed ID: 31255914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic association between germline JAK2 polymorphisms and myeloproliferative neoplasms in Hong Kong Chinese population: a case-control study.
    Koh SP; Yip SP; Lee KK; Chan CC; Lau SM; Kho CS; Lau CK; Lin SY; Lau YM; Wong LG; Au KL; Wong KF; Chu RW; Yu PH; Chow EY; Leung KF; Tsoi WC; Yung BY
    BMC Genet; 2014 Dec; 15():147. PubMed ID: 25526816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oncogenic JAK2
    Prestipino A; Emhardt AJ; Aumann K; O'Sullivan D; Gorantla SP; Duquesne S; Melchinger W; Braun L; Vuckovic S; Boerries M; Busch H; Halbach S; Pennisi S; Poggio T; Apostolova P; Veratti P; Hettich M; Niedermann G; Bartholomä M; Shoumariyeh K; Jutzi JS; Wehrle J; Dierks C; Becker H; Schmitt-Graeff A; Follo M; Pfeifer D; Rohr J; Fuchs S; Ehl S; Hartl FA; Minguet S; Miething C; Heidel FH; Kröger N; Triviai I; Brummer T; Finke J; Illert AL; Ruggiero E; Bonini C; Duyster J; Pahl HL; Lane SW; Hill GR; Blazar BR; von Bubnoff N; Pearce EL; Zeiser R
    Sci Transl Med; 2018 Feb; 10(429):. PubMed ID: 29467301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell autonomous expression of CXCL-10 in JAK2V617F-mutated MPN.
    Schnöder TM; Eberhardt J; Koehler M; Bierhoff HB; Weinert S; Pandey AD; Nimmagadda SC; Wolleschak D; Jöhrens K; Fischer T; Heidel FH
    J Cancer Res Clin Oncol; 2017 May; 143(5):807-820. PubMed ID: 28233092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long noncoding RNA HOTAIR promotes invasion of breast cancer cells through chondroitin sulfotransferase CHST15.
    Liu LC; Wang YL; Lin PL; Zhang X; Cheng WC; Liu SH; Chen CJ; Hung Y; Jan CI; Chang LC; Qi X; Hsieh-Wilson LC; Wang SC
    Int J Cancer; 2019 Nov; 145(9):2478-2487. PubMed ID: 30963568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the JAK2 GGCC haplotype and the TET2 gene in familial myeloproliferative neoplasms.
    Olcaydu D; Rumi E; Harutyunyan A; Passamonti F; Pietra D; Pascutto C; Berg T; Jäger R; Hammond E; Cazzola M; Kralovics R
    Haematologica; 2011 Mar; 96(3):367-74. PubMed ID: 21173100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Janus kinase 2 variants associated with the transformation of myeloproliferative neoplasms into acute myeloid leukemia.
    Benton CB; Boddu PC; DiNardo CD; Bose P; Wang F; Assi R; Pemmaraju N; Kc D; Pierce S; Patel K; Konopleva M; Ravandi F; Garcia-Manero G; Kadia TM; Cortes J; Kantarjian HM; Andreeff M; Verstovsek S
    Cancer; 2019 Jun; 125(11):1855-1866. PubMed ID: 30811597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Development and Use of Janus Kinase 2 Inhibitors for the Treatment of Myeloproliferative Neoplasms.
    Hobbs GS; Rozelle S; Mullally A
    Hematol Oncol Clin North Am; 2017 Aug; 31(4):613-626. PubMed ID: 28673391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IRS2 silencing increases apoptosis and potentiates the effects of ruxolitinib in JAK2V617F-positive myeloproliferative neoplasms.
    de Melo Campos P; Machado-Neto JA; Eide CA; Savage SL; Scopim-Ribeiro R; da Silva Souza Duarte A; Favaro P; Lorand-Metze I; Costa FF; Tognon CE; Druker BJ; Olalla Saad ST; Traina F
    Oncotarget; 2016 Feb; 7(6):6948-59. PubMed ID: 26755644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.