These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 35798797)

  • 1. Muscle function during single leg landing.
    Maniar N; Schache AG; Pizzolato C; Opar DA
    Sci Rep; 2022 Jul; 12(1):11486. PubMed ID: 35798797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromechanical synergies in single-leg landing reveal changes in movement control.
    Nordin AD; Dufek JS
    Hum Mov Sci; 2016 Oct; 49():66-78. PubMed ID: 27341613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle contributions to tibiofemoral shear forces and valgus and rotational joint moments during single leg drop landing.
    Maniar N; Schache AG; Pizzolato C; Opar DA
    Scand J Med Sci Sports; 2020 Sep; 30(9):1664-1674. PubMed ID: 32416625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the relationship between lower extremity muscles activation and peak vertical and posterior ground reaction forces during single leg drop landing.
    Mahaki M; Mi'mar R; Mahaki B
    J Sports Med Phys Fitness; 2015 Oct; 55(10):1145-9. PubMed ID: 25924564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lower-limb muscle function during sidestep cutting.
    Maniar N; Schache AG; Cole MH; Opar DA
    J Biomech; 2019 Jan; 82():186-192. PubMed ID: 30448192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trunk and lower extremity long-axis rotation exercise improves forward single leg jump landing neuromuscular control.
    Nyland J; Krupp R; Givens J; Caborn D
    Physiother Theory Pract; 2022 Nov; 38(13):2689-2701. PubMed ID: 34602021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antagonist muscle co-contraction during a double-leg landing maneuver at two heights.
    Mokhtarzadeh H; Yeow CH; Goh JCH; Oetomo D; Ewing K; Lee PVS
    Comput Methods Biomech Biomed Engin; 2017 Oct; 20(13):1382-1393. PubMed ID: 28836455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing.
    Mokhtarzadeh H; Yeow CH; Hong Goh JC; Oetomo D; Malekipour F; Lee PV
    J Biomech; 2013 Jul; 46(11):1913-20. PubMed ID: 23731572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromuscular and biomechanical landing performance subsequent to ipsilateral semitendinosus and gracilis autograft anterior cruciate ligament reconstruction.
    Vairo GL; Myers JB; Sell TC; Fu FH; Harner CD; Lephart SM
    Knee Surg Sports Traumatol Arthrosc; 2008 Jan; 16(1):2-14. PubMed ID: 17973098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Dropping Height on the Forces of Lower Extremity Joints and Muscles during Landing: A Musculoskeletal Modeling.
    Niu W; Wang L; Jiang C; Zhang M
    J Healthc Eng; 2018; 2018():2632603. PubMed ID: 30079173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled Gluteus Maximus and Gluteus Medius Recruitment Patterns Modulate Hip Adduction Variability During Single-Limb Step-Downs: A Cross-Sectional Study.
    Hollman JH; Beise NJ; Fischer ML; Stecklein TL
    J Sport Rehabil; 2020 Nov; 30(4):625-630. PubMed ID: 33217729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered movement strategies during jump landing/cutting in patients with chronic ankle instability.
    Kim H; Son SJ; Seeley MK; Hopkins JT
    Scand J Med Sci Sports; 2019 Aug; 29(8):1130-1140. PubMed ID: 31050053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Load Accommodation Strategies and Movement Variability in Single-Leg Landing.
    Nordin AD; Dufek JS
    J Appl Biomech; 2017 Aug; 33(4):241-247. PubMed ID: 28084863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in lower-limb biomechanics during single-leg landing considering two peripheral fatigue tasks.
    Asaeda M; Hirata K; Ohnishi T; Ito H; Miyahara S; Mikami Y
    PLoS One; 2024; 19(4):e0297910. PubMed ID: 38603690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison the time to stabilization and activity of the lower extremity muscles during jump-landing in subjects with and without Genu Varum.
    Letafatkar A; Mantashloo Z; Moradi M
    Gait Posture; 2018 Sep; 65():256-261. PubMed ID: 30558941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Gluteus Medius and Biceps Femoris Stimulation on Reduction of Knee Abduction Moment During a Landing Task.
    Wang D; Wang M; Chu VW; Yung PS; Fong DTP
    J Appl Biomech; 2023 Apr; 39(2):110-117. PubMed ID: 36870343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A resistance band increased internal hip abduction moments and gluteus medius activation during pre-landing and early-landing.
    Dai B; Heinbaugh EM; Ning X; Zhu Q
    J Biomech; 2014 Nov; 47(15):3674-80. PubMed ID: 25446268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anticipation of landing leg masks ankle inversion orientation deficits and peroneal insufficiency during jump landing in people with chronic ankle instability.
    Hou Z; Shen W; Fong DTP; Winter SL
    Scand J Med Sci Sports; 2024 Feb; 34(2):e14585. PubMed ID: 38356438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lower Limb Biomechanics During Single-Leg Landings Following Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis.
    Johnston PT; McClelland JA; Webster KE
    Sports Med; 2018 Sep; 48(9):2103-2126. PubMed ID: 29949109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.