These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 35799509)

  • 21. Hypoxia-triggered m-calpain activation evokes endoplasmic reticulum stress and neuropathogenesis in a transgenic mouse model of Alzheimer's disease.
    Wang CY; Xie JW; Wang T; Xu Y; Cai JH; Wang X; Zhao BL; An L; Wang ZY
    CNS Neurosci Ther; 2013 Oct; 19(10):820-33. PubMed ID: 23889979
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impacts of Acute Hypoxia on Alzheimer's Disease-Like Pathologies in APP
    Zhang F; Zhong R; Qi H; Li S; Cheng C; Liu X; Liu Y; Le W
    Front Neurosci; 2018; 12():314. PubMed ID: 29867325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer's disease.
    Pulliam L; Sun B; Mustapic M; Chawla S; Kapogiannis D
    J Neurovirol; 2019 Oct; 25(5):702-709. PubMed ID: 30610738
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Obstructive sleep apnea may induce orexinergic system and cerebral β-amyloid metabolism dysregulation: is it a further proof for Alzheimer's disease risk?
    Liguori C; Mercuri NB; Nuccetelli M; Izzi F; Cordella A; Bernardini S; Placidi F
    Sleep Med; 2019 Apr; 56():171-176. PubMed ID: 30799255
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pyruvate prevents the development of age-dependent cognitive deficits in a mouse model of Alzheimer's disease without reducing amyloid and tau pathology.
    Isopi E; Granzotto A; Corona C; Bomba M; Ciavardelli D; Curcio M; Canzoniero LM; Navarra R; Lattanzio R; Piantelli M; Sensi SL
    Neurobiol Dis; 2015 Sep; 81():214-24. PubMed ID: 25434488
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gut Microbiota Composition and Epigenetic Molecular Changes Connected to the Pathogenesis of Alzheimer's Disease.
    Nagu P; Parashar A; Behl T; Mehta V
    J Mol Neurosci; 2021 Jul; 71(7):1436-1455. PubMed ID: 33829390
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Redox regulation of heat shock protein expression in aging and neurodegenerative disorders associated with oxidative stress: a nutritional approach.
    Calabrese V; Scapagnini G; Colombrita C; Ravagna A; Pennisi G; Giuffrida Stella AM; Galli F; Butterfield DA
    Amino Acids; 2003 Dec; 25(3-4):437-44. PubMed ID: 14661103
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calcium Ions Aggravate Alzheimer's Disease Through the Aberrant Activation of Neuronal Networks, Leading to Synaptic and Cognitive Deficits.
    Guan PP; Cao LL; Yang Y; Wang P
    Front Mol Neurosci; 2021; 14():757515. PubMed ID: 34924952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Status and future directions of clinical trials in Alzheimer's disease.
    Plascencia-Villa G; Perry G
    Int Rev Neurobiol; 2020; 154():3-50. PubMed ID: 32739008
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidative Stress, Synaptic Dysfunction, and Alzheimer's Disease.
    Tönnies E; Trushina E
    J Alzheimers Dis; 2017; 57(4):1105-1121. PubMed ID: 28059794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MicroRNA in Alzheimer's disease revisited: implications for major neuropathological mechanisms.
    Dehghani R; Rahmani F; Rezaei N
    Rev Neurosci; 2018 Feb; 29(2):161-182. PubMed ID: 28941357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advances in Drug Therapy for Alzheimer's Disease.
    Zhu CC; Fu SY; Chen YX; Li L; Mao RL; Wang JZ; Liu R; Liu Y; Wang XC
    Curr Med Sci; 2020 Dec; 40(6):999-1008. PubMed ID: 33428127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Role of Exosomes as Mediators of Neuroinflammation in the Pathogenesis and Treatment of Alzheimer's Disease.
    Weng S; Lai QL; Wang J; Zhuang L; Cheng L; Mo Y; Liu L; Zhao Z; Zhang Y; Qiao S
    Front Aging Neurosci; 2022; 14():899944. PubMed ID: 35837481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial alterations, oxidative stress and neuroinflammation in Alzheimer's disease.
    Verri M; Pastoris O; Dossena M; Aquilani R; Guerriero F; Cuzzoni G; Venturini L; Ricevuti G; Bongiorno AI
    Int J Immunopathol Pharmacol; 2012; 25(2):345-53. PubMed ID: 22697066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. APOE and Alzheimer's Disease: Evidence Mounts that Targeting APOE4 may Combat Alzheimer's Pathogenesis.
    Uddin MS; Kabir MT; Al Mamun A; Abdel-Daim MM; Barreto GE; Ashraf GM
    Mol Neurobiol; 2019 Apr; 56(4):2450-2465. PubMed ID: 30032423
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of Hypoxia Inducible Factor-1α in Alzheimer's Disease.
    Wang YY; Huang ZT; Yuan MH; Jing F; Cai RL; Zou Q; Pu YS; Wang SY; Chen F; Yi WM; Zhang HJ; Cai ZY
    J Alzheimers Dis; 2021; 80(3):949-961. PubMed ID: 33612545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuroprotective potential of berberine in modulating Alzheimer's disease via multiple signaling pathways.
    Akbar M; Shabbir A; Rehman K; Akash MSH; Shah MA
    J Food Biochem; 2021 Oct; 45(10):e13936. PubMed ID: 34523148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Progression of Alzheimer's disease, tau propagation, and its modifiable risk factors.
    Takeda S
    Neurosci Res; 2019 Apr; 141():36-42. PubMed ID: 30120962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beneficial Effects of Fingolimod in Alzheimer's Disease: Molecular Mechanisms and Therapeutic Potential.
    Angelopoulou E; Piperi C
    Neuromolecular Med; 2019 Sep; 21(3):227-238. PubMed ID: 31313064
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long Non-coding RNA: Insight Into Mechanisms of Alzheimer's Disease.
    Lan Z; Chen Y; Jin J; Xu Y; Zhu X
    Front Mol Neurosci; 2021; 14():821002. PubMed ID: 35095418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.