These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 35799803)

  • 1. MolE8: finding DFT potential energy surface minima values from force-field optimised organic molecules with new machine learning representations.
    Lee S; Ermanis K; Goodman JM
    Chem Sci; 2022 Jun; 13(24):7204-7214. PubMed ID: 35799803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Molecular Energy Using Force-Field Optimized Geometries and Atomic Vector Representations Learned from an Improved Deep Tensor Neural Network.
    Lu J; Wang C; Zhang Y
    J Chem Theory Comput; 2019 Jul; 15(7):4113-4121. PubMed ID: 31142110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A big data approach to the ultra-fast prediction of DFT-calculated bond energies.
    Qu X; Latino DA; Aires-de-Sousa J
    J Cheminform; 2013; 5():34. PubMed ID: 23849655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OrbNet Denali: A machine learning potential for biological and organic chemistry with semi-empirical cost and DFT accuracy.
    Christensen AS; Sirumalla SK; Qiao Z; O'Connor MB; Smith DGA; Ding F; Bygrave PJ; Anandkumar A; Welborn M; Manby FR; Miller TF
    J Chem Phys; 2021 Nov; 155(20):204103. PubMed ID: 34852495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum-Chemically Informed Machine Learning: Prediction of Energies of Organic Molecules with 10 to 14 Non-hydrogen Atoms.
    Dandu N; Ward L; Assary RS; Redfern PC; Narayanan B; Foster IT; Curtiss LA
    J Phys Chem A; 2020 Jul; 124(28):5804-5811. PubMed ID: 32539388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BAND NN: A Deep Learning Framework for Energy Prediction and Geometry Optimization of Organic Small Molecules.
    Laghuvarapu S; Pathak Y; Priyakumar UD
    J Comput Chem; 2020 Mar; 41(8):790-799. PubMed ID: 31845368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error.
    Faber FA; Hutchison L; Huang B; Gilmer J; Schoenholz SS; Dahl GE; Vinyals O; Kearnes S; Riley PF; von Lilienfeld OA
    J Chem Theory Comput; 2017 Nov; 13(11):5255-5264. PubMed ID: 28926232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate modeling of the potential energy surface of atmospheric molecular clusters boosted by neural networks.
    Kubečka J; Ayoubi D; Tang Z; Knattrup Y; Engsvang M; Wu H; Elm J
    Env Sci Adv; 2024 Oct; 3(10):1438-1451. PubMed ID: 39176037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space.
    Hansen K; Biegler F; Ramakrishnan R; Pronobis W; von Lilienfeld OA; Müller KR; Tkatchenko A
    J Phys Chem Lett; 2015 Jun; 6(12):2326-31. PubMed ID: 26113956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmark study on deep neural network potentials for small organic molecules.
    Modee R; Laghuvarapu S; Priyakumar UD
    J Comput Chem; 2022 Feb; 43(5):308-318. PubMed ID: 34870332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum-based machine learning and AI models to generate force field parameters for drug-like small molecules.
    Mudedla SK; Braka A; Wu S
    Front Mol Biosci; 2022; 9():1002535. PubMed ID: 36304919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective Molecular Descriptors for Chemical Accuracy at DFT Cost: Fragmentation, Error-Cancellation, and Machine Learning.
    Collins EM; Raghavachari K
    J Chem Theory Comput; 2020 Aug; 16(8):4938-4950. PubMed ID: 32678593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmarking Force Field and the ANI Neural Network Potentials for the Torsional Potential Energy Surface of Biaryl Drug Fragments.
    Lahey SJ; Thien Phuc TN; Rowley CN
    J Chem Inf Model; 2020 Dec; 60(12):6258-6268. PubMed ID: 33263401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Force-Field Calculations of Lattice Energies on a Large Public Dataset, Assessment of Pharmaceutical Relevance, and Comparison to Density Functional Theory.
    Marchese Robinson RL; Geatches D; Morris C; Mackenzie R; Maloney AGP; Roberts KJ; Moldovan A; Chow E; Pencheva K; Vatvani DRM
    J Chem Inf Model; 2019 Nov; 59(11):4778-4792. PubMed ID: 31638394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of the Characteristics of Quantum Chemical Databases on Machine Learning Prediction of Tautomerization Energies.
    Vazquez-Salazar LI; Boittier ED; Unke OT; Meuwly M
    J Chem Theory Comput; 2021 Aug; 17(8):4769-4785. PubMed ID: 34288675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of
    Gerrard W; Yiu C; Butts CP
    Magn Reson Chem; 2022 Nov; 60(11):1087-1092. PubMed ID: 34407565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cluster-MLP: An Active Learning Genetic Algorithm Framework for Accelerated Discovery of Global Minimum Configurations of Pure and Alloyed Nanoclusters.
    Raju RK; Sivakumar S; Wang X; Ulissi ZW
    J Chem Inf Model; 2023 Oct; 63(20):6192-6197. PubMed ID: 37824704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.