These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
657 related articles for article (PubMed ID: 35800164)
1. Comparison of Four Machine Learning Techniques for Prediction of Intensive Care Unit Length of Stay in Heart Transplantation Patients. Wang K; Yan LZ; Li WZ; Jiang C; Wang NN; Zheng Q; Dong NG; Shi JW Front Cardiovasc Med; 2022; 9():863642. PubMed ID: 35800164 [TBL] [Abstract][Full Text] [Related]
2. Interpretable machine learning for predicting 28-day all-cause in-hospital mortality for hypertensive ischemic or hemorrhagic stroke patients in the ICU: a multi-center retrospective cohort study with internal and external cross-validation. Huang J; Chen H; Deng J; Liu X; Shu T; Yin C; Duan M; Fu L; Wang K; Zeng S Front Neurol; 2023; 14():1185447. PubMed ID: 37614971 [TBL] [Abstract][Full Text] [Related]
3. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases. Peng S; Huang J; Liu X; Deng J; Sun C; Tang J; Chen H; Cao W; Wang W; Duan X; Luo X; Peng S Front Cardiovasc Med; 2022; 9():994359. PubMed ID: 36312291 [TBL] [Abstract][Full Text] [Related]
4. Machine learning-based in-hospital mortality risk prediction tool for intensive care unit patients with heart failure. Chen Z; Li T; Guo S; Zeng D; Wang K Front Cardiovasc Med; 2023; 10():1119699. PubMed ID: 37077747 [TBL] [Abstract][Full Text] [Related]
5. An explainable machine learning-based model to predict intensive care unit admission among patients with community-acquired pneumonia and connective tissue disease. Huang D; Gong L; Wei C; Wang X; Liang Z Respir Res; 2024 Jun; 25(1):246. PubMed ID: 38890628 [TBL] [Abstract][Full Text] [Related]
6. Establishment and validation of a heart failure risk prediction model for elderly patients after coronary rotational atherectomy based on machine learning. Zhang L; Zhou X; Cao J PeerJ; 2024; 12():e16867. PubMed ID: 38313005 [TBL] [Abstract][Full Text] [Related]
7. Prognostic Assessment of COVID-19 in the Intensive Care Unit by Machine Learning Methods: Model Development and Validation. Pan P; Li Y; Xiao Y; Han B; Su L; Su M; Li Y; Zhang S; Jiang D; Chen X; Zhou F; Ma L; Bao P; Xie L J Med Internet Res; 2020 Nov; 22(11):e23128. PubMed ID: 33035175 [TBL] [Abstract][Full Text] [Related]
8. Prediction of Acute Kidney Injury after Extracorporeal Cardiac Surgery (CSA-AKI) by Machine Learning Algorithms. Tong Y; Niu X; Liu F Heart Surg Forum; 2023 Oct; 26(5):E537-E551. PubMed ID: 37920093 [TBL] [Abstract][Full Text] [Related]
9. Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study. Li J; Liu S; Hu Y; Zhu L; Mao Y; Liu J J Med Internet Res; 2022 Aug; 24(8):e38082. PubMed ID: 35943767 [TBL] [Abstract][Full Text] [Related]
10. Interpretable machine learning model for early prediction of delirium in elderly patients following intensive care unit admission: a derivation and validation study. Tang D; Ma C; Xu Y Front Med (Lausanne); 2024; 11():1399848. PubMed ID: 38828233 [TBL] [Abstract][Full Text] [Related]
11. [Comparison of machine learning and Logistic regression model in predicting acute kidney injury after cardiac surgery: data analysis based on MIMIC-III database]. Xiong W; Zhang L; She K; Xu G; Bai S; Liu X Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2022 Nov; 34(11):1188-1193. PubMed ID: 36567564 [TBL] [Abstract][Full Text] [Related]
12. Incorporation of a machine learning pathological diagnosis algorithm into the thyroid ultrasound imaging data improves the diagnosis risk of malignant thyroid nodules. Li W; Hong T; Fang J; Liu W; Liu Y; He C; Li X; Xu C; Wang B; Chen Y; Sun C; Li W; Kang W; Yin C Front Oncol; 2022; 12():968784. PubMed ID: 36568189 [TBL] [Abstract][Full Text] [Related]
13. Application of machine learning model in predicting the likelihood of blood transfusion after hip fracture surgery. Chen X; Pan J; Li Y; Tang R Aging Clin Exp Res; 2023 Nov; 35(11):2643-2656. PubMed ID: 37733228 [TBL] [Abstract][Full Text] [Related]
14. The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models. Ye Z; An S; Gao Y; Xie E; Zhao X; Guo Z; Li Y; Shen N; Ren J; Zheng J Eur J Med Res; 2023 Jan; 28(1):33. PubMed ID: 36653875 [TBL] [Abstract][Full Text] [Related]
15. Twenty-eight-day in-hospital mortality prediction for elderly patients with ischemic stroke in the intensive care unit: Interpretable machine learning models. Huang J; Jin W; Duan X; Liu X; Shu T; Fu L; Deng J; Chen H; Liu G; Jiang Y; Liu Z Front Public Health; 2022; 10():1086339. PubMed ID: 36711330 [TBL] [Abstract][Full Text] [Related]
16. Machine Learning for the Prediction of Complications in Patients After Mitral Valve Surgery. Jiang H; Liu L; Wang Y; Ji H; Ma X; Wu J; Huang Y; Wang X; Gui R; Zhao Q; Chen B Front Cardiovasc Med; 2021; 8():771246. PubMed ID: 34977184 [No Abstract] [Full Text] [Related]
17. Explainable machine learning model to predict refeeding hypophosphatemia. Choi TY; Chang MY; Heo S; Jang JY Clin Nutr ESPEN; 2021 Oct; 45():213-219. PubMed ID: 34620320 [TBL] [Abstract][Full Text] [Related]
18. [Application of machine learning model based on XGBoost algorithm in early prediction of patients with acute severe pancreatitis]. Gao X; Lin J; Wu A; Gu H; Liu X; Yin M; Zhou Z; Zhang R; Xu C; Zhu J Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Apr; 35(4):421-426. PubMed ID: 37308200 [TBL] [Abstract][Full Text] [Related]
19. Explainable machine learning and online calculators to predict heart failure mortality in intensive care units. Chen AT; Zhang Y; Zhang J ESC Heart Fail; 2024 Sep; ():. PubMed ID: 39300773 [TBL] [Abstract][Full Text] [Related]
20. Machine learning for prediction of in-hospital mortality in lung cancer patients admitted to intensive care unit. Huang T; Le D; Yuan L; Xu S; Peng X PLoS One; 2023; 18(1):e0280606. PubMed ID: 36701342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]