These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35800612)

  • 1. Spatiotemporal Variation in Aboveground Biomass and Its Response to Climate Change in the Marsh of Sanjiang Plain.
    Liu Y; Shen X; Wang Y; Zhang J; Ma R; Lu X; Jiang M
    Front Plant Sci; 2022; 13():920086. PubMed ID: 35800612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aboveground Biomass of Wetland Vegetation Under Climate Change in the Western Songnen Plain.
    Wang Y; Shen X; Tong S; Zhang M; Jiang M; Lu X
    Front Plant Sci; 2022; 13():941689. PubMed ID: 35783931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal variation in vegetation phenology and its response to climate change in marshes of Sanjiang Plain, China.
    Liu Y; Shen X; Zhang J; Wang Y; Wu L; Ma R; Lu X; Jiang M
    Ecol Evol; 2023 Jan; 13(1):e9755. PubMed ID: 36699565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal variation in vegetation spring phenology and its response to climate change in freshwater marshes of Northeast China.
    Shen X; Liu B; Xue Z; Jiang M; Lu X; Zhang Q
    Sci Total Environ; 2019 May; 666():1169-1177. PubMed ID: 30970482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecological risk assessment of wetland vegetation under projected climate scenarios in the Sanjiang Plain, China.
    Fu J; Liu J; Wang X; Zhang M; Chen W; Chen B
    J Environ Manage; 2020 Nov; 273():111108. PubMed ID: 32741759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatio-temporal variation in vegetation biomass and its relationships with climate factors in the Xilingol grasslands, Northern China.
    Gao T; Yang X; Jin Y; Ma H; Li J; Yu H; Yu Q; Zheng X; Xu B
    PLoS One; 2013; 8(12):e83824. PubMed ID: 24358313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concentration and characteristics of dissolved carbon in the Sanjiang Plain influenced by long-term land reclamation from marsh.
    Guo YD; Lu YZ; Song YY; Wan ZM; Hou AX
    Sci Total Environ; 2014 Jan; 466-467():777-87. PubMed ID: 23973544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Key factors affecting spatial variation of methane emissions from freshwater marshes.
    Ding W; Cai Z; Tsuruta H; Li X
    Chemosphere; 2003 Apr; 51(3):167-73. PubMed ID: 12591249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Estimation of Grassland Aboveground Biomass and Analysis of Its Response to Climatic Factors Using a Random Forest Algorithm in Xinjiang, China.
    Dong P; Jing C; Wang G; Shao Y; Gao Y
    Plants (Basel); 2024 Feb; 13(4):. PubMed ID: 38498537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in Vegetation Phenology and Its Response to Climate Change in Marshes of Inner Mongolian.
    Liu Y; Shen X; Zhang J; Wang Y; Wu L; Ma R; Lu X; Jiang M
    Plants (Basel); 2023 May; 12(11):. PubMed ID: 37299051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forest biomass estimation using remote sensing and field inventory: a case study of Tripura, India.
    Pandey PC; Srivastava PK; Chetri T; Choudhary BK; Kumar P
    Environ Monit Assess; 2019 Aug; 191(9):593. PubMed ID: 31456055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of aboveground and belowground carbon stocks in urban freshwater wetlands of Sri Lanka.
    Dayathilake DDTL; Lokupitiya E; Wijeratne VPIS
    Carbon Balance Manag; 2020 Sep; 15(1):17. PubMed ID: 32876789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature sensitivities of vegetation indices and aboveground biomass are primarily linked with warming magnitude in high-cold grasslands.
    Fu G; Sun W
    Sci Total Environ; 2022 Oct; 843():157002. PubMed ID: 35772540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal dynamics of grassland aboveground biomass on the Qinghai-Tibet Plateau based on validated MODIS NDVI.
    Liu S; Cheng F; Dong S; Zhao H; Hou X; Wu X
    Sci Rep; 2017 Jun; 7(1):4182. PubMed ID: 28646198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-Scale Marsh Loss Reconstructed from Satellite Data in the Small Sanjiang Plain since 1965: Process, Pattern and Driving Force.
    Yan F
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal dynamics of grassland aboveground biomass and its driving factors in North China over the past 20 years.
    Ge J; Hou M; Liang T; Feng Q; Meng X; Liu J; Bao X; Gao H
    Sci Total Environ; 2022 Jun; 826():154226. PubMed ID: 35240176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What did China's National Wetland Conservation Program Achieve?Observations of changes in land cover and ecosystem services in the Sanjiang Plain.
    Xiang H; Wang Z; Mao D; Zhang J; Xi Y; Du B; Zhang B
    J Environ Manage; 2020 Aug; 267():110623. PubMed ID: 32364128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An evaluation model for aboveground biomass based on hyperspectral data from field and TM8 in Khorchin grassland, China.
    Zhang X; Chen X; Tian M; Fan Y; Ma J; Xing D
    PLoS One; 2020; 15(2):e0223934. PubMed ID: 32109248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of aboveground grassland biomass on the Loess Plateau, China, using a random forest algorithm.
    Wang Y; Wu G; Deng L; Tang Z; Wang K; Sun W; Shangguan Z
    Sci Rep; 2017 Jul; 7(1):6940. PubMed ID: 28761059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of individual sizes and spatial patterns of Deyeuxia angustifolia to increasing water level gradient in a freshwater wetland.
    Ren H; Shi FX; Mao R; Guo YD; Zhao WZ
    Environ Sci Pollut Res Int; 2020 May; 27(14):17085-17092. PubMed ID: 32146663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.