These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35800754)

  • 1. Physiological and transcriptomic responses of
    Li Z; Li S; Li T; Gao X; Zhu L
    iScience; 2022 Jul; 25(7):104638. PubMed ID: 35800754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological responses and removal mechanisms of ciprofloxacin in freshwater microalgae.
    Li Z; Li S; Wu Q; Gao X; Zhu L
    J Hazard Mater; 2024 Mar; 466():133519. PubMed ID: 38278073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of levofloxacin by an oleaginous microalgae Chromochloris zofingiensis in the heterotrophic mode of cultivation: Removal performance and mechanism.
    Peng J; He YY; Zhang ZY; Chen XZ; Jiang YL; Guo H; Yuan JP; Wang JH
    J Hazard Mater; 2022 Mar; 425():128036. PubMed ID: 34986572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insight into the concentration-dependent removal of multiple antibiotics by Chlorella sorokiniana.
    Chu Y; Li S; Xie P; Chen X; Li X; Ho SH
    Bioresour Technol; 2023 Oct; 385():129409. PubMed ID: 37392966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of growth and antioxidant responses of freshwater microalgae Chlorella sorokiniana and Scenedesmus dimorphus under exposure of moxifloxacin.
    Li Z; Gao X; Bao J; Li S; Wang X; Li Z; Zhu L
    Sci Total Environ; 2023 Feb; 858(Pt 1):159788. PubMed ID: 36309277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced ciprofloxacin removal by sludge-derived biochar: Effect of humic acid.
    Luo K; Pang Y; Yang Q; Wang D; Li X; Wang L; Lei M; Liu J
    Chemosphere; 2019 Sep; 231():495-501. PubMed ID: 31151009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acids and acylcarnitine production by
    Ballesteros-Torres JM; Samaniego-Moreno L; Gomez-Flores R; Tamez-Guerra RS; Rodríguez-Padilla C; Tamez-Guerra P
    PeerJ; 2019; 7():e7977. PubMed ID: 31824754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fate and removal of Ciprofloxacin in an anaerobic membrane bioreactor (AnMBR).
    Do MT; Stuckey DC
    Bioresour Technol; 2019 Oct; 289():121683. PubMed ID: 31238291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo transcriptomic analysis of Chlorella sorokiniana reveals differential genes expression in photosynthetic carbon fixation and lipid production.
    Li L; Zhang G; Wang Q
    BMC Microbiol; 2016 Sep; 16(1):223. PubMed ID: 27669744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy of Ciprofloxacin and Amoxicillin Removal and the Effect on the Biochemical Composition of
    Ricky R; Chiampo F; Shanthakumar S
    Bioengineering (Basel); 2022 Mar; 9(4):. PubMed ID: 35447694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ciprofloxacin-degrading Paraclostridium sp. isolated from sulfate-reducing bacteria-enriched sludge: Optimization and mechanism.
    Fang H; Oberoi AS; He Z; Khanal SK; Lu H
    Water Res; 2021 Mar; 191():116808. PubMed ID: 33454651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions.
    Kim S; Park JE; Cho YB; Hwang SJ
    Bioresour Technol; 2013 Sep; 144():8-13. PubMed ID: 23850820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration of applying growth-promotion bacteria of Chlorella sorokiniana to open cultivation systems.
    Zhou Z; Li Q; Song K; Wang R; Wen S; Zhang D; Cong W
    Bioprocess Biosyst Eng; 2021 Jul; 44(7):1567-1576. PubMed ID: 33656614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of dissolved organic matter, pH and nutrient on ciprofloxacin bioaccumulation and toxicity in duckweed.
    Shen M; Hu Y; Zhao K; Qu Z; Lyu C; Liu B; Li M; Bu X; Li C; Zhong S; Cheng J
    Aquat Toxicol; 2024 Jan; 266():106775. PubMed ID: 38043483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotransformation of sulfamethoxazole by microalgae: Removal efficiency, pathways, and mechanisms.
    Chu Y; Zhang C; Wang R; Chen X; Ren N; Ho SH
    Water Res; 2022 Aug; 221():118834. PubMed ID: 35839594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome and Metabolome Profiling of a Novel Isolate
    Zhu Q; Zhang M; Liu B; Wen F; Yang Z; Liu J
    Front Microbiol; 2021; 12():760307. PubMed ID: 35069466
    [No Abstract]   [Full Text] [Related]  

  • 17. [Removal and Influence of Ciprofloxacin in a Membrane Bioreactor].
    Dai Q; Liu R; Shu XM; Zhang YM; Chen LJ
    Huan Jing Ke Xue; 2018 Jan; 39(1):212-218. PubMed ID: 29965684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling the Toxicity Associated with Ciprofloxacin Biodegradation in Biological Wastewater Treatment.
    Zhang H; Quan H; Yin S; Sun L; Lu H
    Environ Sci Technol; 2022 Nov; 56(22):15941-15952. PubMed ID: 36264842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced catalytic degradation of ciprofloxacin with FeS
    Diao ZH; Xu XR; Jiang D; Li G; Liu JJ; Kong LJ; Zuo LZ
    J Hazard Mater; 2017 Apr; 327():108-115. PubMed ID: 28049066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cadmium in the microalga Chlorella sorokiniana: A proteomic study.
    León-Vaz A; Romero LC; Gotor C; León R; Vigara J
    Ecotoxicol Environ Saf; 2021 Jan; 207():111301. PubMed ID: 32949933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.