These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35801584)

  • 1. Tracking Molecular Diffusion across Biomaterials' Interfaces Using Stimulated Raman Scattering.
    Cui H; Glidle A; Cooper JM
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):31586-31593. PubMed ID: 35801584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman spectroscopy as a tool for measuring mutual-diffusion coefficients in hydrogels.
    Kwak S; Lafleur M
    Appl Spectrosc; 2003 Jul; 57(7):768-73. PubMed ID: 14658654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy.
    Pandey R; Paidi SK; Valdez TA; Zhang C; Spegazzini N; Dasari RR; Barman I
    Acc Chem Res; 2017 Feb; 50(2):264-272. PubMed ID: 28071894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman spectroscopy and WAXS method as a tool for analysing ion-exchange properties of alginate hydrogels.
    Pielesz A; Bak MK
    Int J Biol Macromol; 2008 Dec; 43(5):438-43. PubMed ID: 18835294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug diffusivities in nanofibrillar cellulose hydrogel by combined time-resolved Raman and fluorescence spectroscopy.
    Zini J; Kekkonen J; Kaikkonen VA; Laaksonen T; Keränen P; Talala T; Mäkynen AJ; Yliperttula M; Nissinen I
    J Control Release; 2021 Jun; 334():367-375. PubMed ID: 33930478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy.
    Zhang D; Wang P; Slipchenko MN; Cheng JX
    Acc Chem Res; 2014 Aug; 47(8):2282-90. PubMed ID: 24871269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-Free Measurements of Tenofovir Diffusion Coefficients in a Microbicide Gel Using Raman Spectroscopy.
    Chuchuen O; Maher JR; Simons MG; Peters JJ; Wax AP; Katz DF
    J Pharm Sci; 2017 Feb; 106(2):639-644. PubMed ID: 27837968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular diffusion in the human nail measured by stimulated Raman scattering microscopy.
    Chiu WS; Belsey NA; Garrett NL; Moger J; Delgado-Charro MB; Guy RH
    Proc Natl Acad Sci U S A; 2015 Jun; 112(25):7725-30. PubMed ID: 26056283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-Free Molecular Imaging of Biological Cells and Tissues by Linear and Nonlinear Raman Spectroscopic Approaches.
    Krafft C; Schmitt M; Schie IW; Cialla-May D; Matthäus C; Bocklitz T; Popp J
    Angew Chem Int Ed Engl; 2017 Apr; 56(16):4392-4430. PubMed ID: 27862751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of curcumin-loaded alginate nanocarriers in hydrogels using Raman and attenuated total reflection infrared spectroscopy.
    Miloudi L; Bonnier F; Bertrand D; Byrne HJ; Perse X; Chourpa I; Munnier E
    Anal Bioanal Chem; 2017 Jul; 409(19):4593-4605. PubMed ID: 28540461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman Spectroscopy Methods to Characterize the Mechanical Response of Soft Biomaterials.
    Zhou H; Simmons CS; Sarntinoranont M; Subhash G
    Biomacromolecules; 2020 Sep; 21(9):3485-3497. PubMed ID: 32833438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Method for quantitative determination of spatial polymer distribution in alginate beads using Raman spectroscopy.
    Heinemann M; Meinberg H; Büchs J; Koss HJ; Ansorge-Schumacher MB
    Appl Spectrosc; 2005 Mar; 59(3):280-5. PubMed ID: 15901307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design.
    McGill M; Coburn JM; Partlow BP; Mu X; Kaplan DL
    Acta Biomater; 2017 Nov; 63():76-84. PubMed ID: 28919509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of Local Heterogeneity in Mechanical Properties of Nanostructured Hydrogel Networks.
    Meng Z; Thakur T; Chitrakar C; Jaiswal MK; Gaharwar AK; Yakovlev VV
    ACS Nano; 2017 Aug; 11(8):7690-7696. PubMed ID: 28745508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy.
    Penel G; Delfosse C; Descamps M; Leroy G
    Bone; 2005 May; 36(5):893-901. PubMed ID: 15814305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free analysis of cellular biochemistry by Raman spectroscopy and microscopy.
    Schie IW; Huser T
    Compr Physiol; 2013 Apr; 3(2):941-56. PubMed ID: 23720335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial Heterodyne Offset Raman Spectroscopy Enabling Rapid, High Sensitivity Characterization of Materials' Interfaces.
    Cui H; Glidle A; Cooper JM
    Small; 2021 Jun; 17(24):e2101114. PubMed ID: 34013665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules.
    Hong S; Chen T; Zhu Y; Li A; Huang Y; Chen X
    Angew Chem Int Ed Engl; 2014 Jun; 53(23):5827-31. PubMed ID: 24753329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Frequency Raman Scattering Spectroscopy as an Accessible Approach to Understand Drug Solubilization in Milk-Based Formulations during Digestion.
    Salim M; Fraser-Miller SJ; Be Rziņš KR; Sutton JJ; Ramirez G; Clulow AJ; Hawley A; Beilles S; Gordon KC; Boyd BJ
    Mol Pharm; 2020 Mar; 17(3):885-899. PubMed ID: 32011151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model-based measurements of diffusion of sulfuric acid into water using Raman spectroscopy.
    Sobron P; Sobron F; Eide UM; Nielsen CJ; Rull F
    Appl Spectrosc; 2009 Dec; 63(12):1382-8. PubMed ID: 20030984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.