These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35801820)

  • 21. Solar Energy Storage by Molecular Norbornadiene-Quadricyclane Photoswitches: Polymer Film Devices.
    Petersen AU; Hofmann AI; Fillols M; Mansø M; Jevric M; Wang Z; Sumby CJ; Müller C; Moth-Poulsen K
    Adv Sci (Weinh); 2019 Jun; 6(12):1900367. PubMed ID: 31380172
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Azobenzene-Based Solar Thermal Fuels: A Review.
    Zhang B; Feng Y; Feng W
    Nanomicro Lett; 2022 Jun; 14(1):138. PubMed ID: 35767090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photoswitchable Molecular Rings for Solar-Thermal Energy Storage.
    Durgun E; Grossman JC
    J Phys Chem Lett; 2013 Mar; 4(6):854-60. PubMed ID: 26291346
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrazone Photoswitches for Structural Modulation of Short Peptides.
    Jeong M; Park J; Seo Y; Lee K; Pramanik S; Ahn S; Kwon S
    Chemistry; 2022 Feb; 28(11):e202103972. PubMed ID: 34962683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photochemical Phase Transitions Enable Coharvesting of Photon Energy and Ambient Heat for Energetic Molecular Solar Thermal Batteries That Upgrade Thermal Energy.
    Zhang ZY; He Y; Wang Z; Xu J; Xie M; Tao P; Ji D; Moth-Poulsen K; Li T
    J Am Chem Soc; 2020 Jul; 142(28):12256-12264. PubMed ID: 32551567
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-photon absorption and two-photon-induced isomerization of azobenzene compounds.
    Dudek M; Tarnowicz-Staniak N; Deiana M; Pokładek Z; Samoć M; Matczyszyn K
    RSC Adv; 2020 Nov; 10(66):40489-40507. PubMed ID: 35520821
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoswitchable dynamic combinatorial libraries: coupling azobenzene photoisomerization with hydrazone exchange.
    Ingerman LA; Waters ML
    J Org Chem; 2009 Jan; 74(1):111-7. PubMed ID: 19032061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical study on the reaction mechanism of the thermal
    Liu XM; Jin XY; Zhang ZX; Wang J; Bai FQ
    RSC Adv; 2018 Mar; 8(21):11580-11588. PubMed ID: 35542787
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Copper Sulfide Nanodisk-Doped Solid-Solid Phase Change Materials for Full Spectrum Solar-Thermal Energy Harvesting and Storage.
    Xiong F; Yuan K; Aftab W; Jiang H; Shi J; Liang Z; Gao S; Zhong R; Wang H; Zou R
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1377-1385. PubMed ID: 33351579
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Taking up the quest for novel molecular solar thermal systems: Pros and cons of storing energy with cubane and cubadiene.
    Merino-Robledillo C; Marazzi M
    Front Chem; 2023; 11():1171848. PubMed ID: 37123877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solar-Thermal Energy Conversion and Storage Using Photoresponsive Azobenzene-Containing Polymers.
    Wu S; Butt HJ
    Macromol Rapid Commun; 2020 Jan; 41(1):e1900413. PubMed ID: 31737964
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular Solar Thermal Batteries through Combination of Magnetic Nanoparticle Catalysts and Tailored Norbornadiene Photoswitches.
    Lorenz P; Luchs T; Hirsch A
    Chemistry; 2021 Mar; 27(15):4993-5002. PubMed ID: 33449419
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fused Bis(hemi-indigo): Broad-Range Wavelength-Independent Photoswitches.
    Berdnikova DV; Kriesche BM; Paululat T; Hofer TS
    Chemistry; 2022 Dec; 28(71):e202202752. PubMed ID: 36134500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Status and challenges for molecular solar thermal energy storage system based devices.
    Wang Z; Hölzel H; Moth-Poulsen K
    Chem Soc Rev; 2022 Aug; 51(17):7313-7326. PubMed ID: 35726574
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular solar thermal energy storage in photoswitch oligomers increases energy densities and storage times.
    Mansø M; Petersen AU; Wang Z; Erhart P; Nielsen MB; Moth-Poulsen K
    Nat Commun; 2018 May; 9(1):1945. PubMed ID: 29769524
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Supramolecular Cation-π Interaction Enhances Molecular Solar Thermal Fuel.
    Song T; Lei H; Cai F; Kang Y; Yu H; Zhang L
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1940-1949. PubMed ID: 34928571
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels.
    Cho EN; Zhitomirsky D; Han GG; Liu Y; Grossman JC
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8679-8687. PubMed ID: 28234453
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arylazopyrazole-Based Dendrimer Solar Thermal Fuels: Stable Visible Light Storage and Controllable Heat Release.
    Xu X; Wu B; Zhang P; Xing Y; Shi K; Fang W; Yu H; Wang G
    ACS Appl Mater Interfaces; 2021 May; 13(19):22655-22663. PubMed ID: 33970599
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Planarization-Induced Activation Wavelength Red-Shift and Thermal Half-Life Acceleration in Hydrazone Photoswitches.
    Shao B; Aprahamian I
    ChemistryOpen; 2020 Feb; 9(2):191-194. PubMed ID: 32025464
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isomerization mechanism in hydrazone-based rotary switches: lateral shift, rotation, or tautomerization?
    Landge SM; Tkatchouk E; Benítez D; Lanfranchi DA; Elhabiri M; Goddard WA; Aprahamian I
    J Am Chem Soc; 2011 Jun; 133(25):9812-23. PubMed ID: 21585197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.