These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35801858)

  • 1. Engineering Crystal Orientation of Cathode for Advanced Lithium-Ion Batteries: A Minireview.
    Zhu L; Fu L; Zhou K; Yang L; Tang Z; Sun D; Tang Y; Li Y; Wang H
    Chem Rec; 2022 Oct; 22(10):e202200128. PubMed ID: 35801858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structural design of exposed planes: express channels, high-rate capability cathodes for lithium-ion batteries.
    Zhou S; Mei T; Wang X; Qian Y
    Nanoscale; 2018 Sep; 10(37):17435-17455. PubMed ID: 30207360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. General Synthesis of Single-Crystal Spinel Cathodes with the Tailored Orientation of Exposed Crystal Planes for Advanced Lithium-Ion Batteries.
    Hou P; Lin Z; Li F; Xu X
    Small; 2023 Nov; 19(48):e2304482. PubMed ID: 37571831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical surface atomic structure of a manganese-based spinel cathode for lithium-ion batteries.
    Lee S; Yoon G; Jeong M; Lee MJ; Kang K; Cho J
    Angew Chem Int Ed Engl; 2015 Jan; 54(4):1153-8. PubMed ID: 25470462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon-Based Modification Materials for Lithium-ion Battery Cathodes: Advances and Perspectives.
    Zhou L; Yang H; Han T; Song Y; Yang G; Li L
    Front Chem; 2022; 10():914930. PubMed ID: 35755257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of single-crystal ternary cathode materials
    Huang C; Xia X; Chi Z; Yang Z; Huang H; Chen Z; Tang W; Wu G; Chen H; Zhang W
    Nanoscale; 2022 Jul; 14(27):9724-9735. PubMed ID: 35762909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Few Atomic Layered Lithium Cathode Materials to Achieve Ultrahigh Rate Capability in Lithium-Ion Batteries.
    Tai Z; Subramaniyam CM; Chou SL; Chen L; Liu HK; Dou SX
    Adv Mater; 2017 Sep; 29(34):. PubMed ID: 28685878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges of layer-structured cathodes for sodium-ion batteries.
    Shi C; Wang L; Chen X; Li J; Wang S; Wang J; Jin H
    Nanoscale Horiz; 2022 Mar; 7(4):338-351. PubMed ID: 35060586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Building Practical High-Voltage Cathode Materials for Lithium-Ion Batteries.
    Xiang J; Wei Y; Zhong Y; Yang Y; Cheng H; Yuan L; Xu H; Huang Y
    Adv Mater; 2022 Dec; 34(52):e2200912. PubMed ID: 35332962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Layered Metal-Oxide Cathodes for Application in Potassium-Ion Batteries.
    Nathan MGT; Yu H; Kim GT; Kim JH; Cho JS; Kim J; Kim JK
    Adv Sci (Weinh); 2022 Jun; 9(18):e2105882. PubMed ID: 35478355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
    Lee KT; Jeong S; Cho J
    Acc Chem Res; 2013 May; 46(5):1161-70. PubMed ID: 22509931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A glance of the layered transition metal oxide cathodes in sodium and lithium-ion batteries: difference and similarities.
    Xiao B; Omenya F; Reed D; Li X
    Nanotechnology; 2021 Jul; 32(42):. PubMed ID: 34243170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances and Prospects of High-Voltage Spinel Cathodes for Lithium-Based Batteries.
    Yu X; Yu WA; Manthiram A
    Small Methods; 2021 May; 5(5):e2001196. PubMed ID: 34928095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na doping into Li-rich layered single crystal nanoparticles for high-performance lithium-ion batteries cathodes.
    Li J; Lin H; Tang C; Yu D; Sun J; Zhang W; Wang Y
    Nanotechnology; 2021 Nov; 33(6):. PubMed ID: 34724655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinel-Layered Intergrowth Composite Cathodes for Sodium-Ion Batteries.
    Tang M; Yang J; Liu H; Chen X; Kong L; Xu Z; Huang J; Xia Y
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):45997-46004. PubMed ID: 32924420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding anion-redox reactions in cathode materials of lithium-ion batteries through
    Hwang YY; Han JH; Park SH; Jung JE; Lee NK; Lee YJ
    Nanotechnology; 2022 Feb; 33(18):. PubMed ID: 35042200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Performance Cathode Materials for Potassium-Ion Batteries: Structural Design and Electrochemical Properties.
    Xu YS; Guo SJ; Tao XS; Sun YG; Ma J; Liu C; Cao AM
    Adv Mater; 2021 Sep; 33(36):e2100409. PubMed ID: 34270806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances of Transition Metal Chalcogenides as Cathode Materials for Aqueous Zinc-Ion Batteries.
    Liu Y; Wu X
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinel/Layered Heterostructured Lithium-Rich Oxide Nanowires as Cathode Material for High-Energy Lithium-Ion Batteries.
    Yu R; Zhang X; Liu T; Yang L; Liu L; Wang Y; Wang X; Shu H; Yang X
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41210-41223. PubMed ID: 29115815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in lithium-rich manganese-based cathodes for high energy density lithium-ion batteries.
    Chen H; Sun C
    Chem Commun (Camb); 2023 Jul; 59(59):9029-9055. PubMed ID: 37376977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.