BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35802005)

  • 1. 3D shape reconstruction of normal and cancerous red blood cells using digital holographic tomography: Combination of angular spectrum method and multiplicative technique.
    Ibrahim DGA
    J Microsc; 2022 Sep; 287(3):156-166. PubMed ID: 35802005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional counting of morphologically normal human red blood cells via digital holographic microscopy.
    Yi F; Moon I; Lee YH
    J Biomed Opt; 2015 Jan; 20(1):016005. PubMed ID: 25567613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AI-based analysis of 3D position and orientation of red blood cells using a digital in-line holographic microscopy.
    Kim Y; Kim J; Seo E; Lee SJ
    Biosens Bioelectron; 2023 Jun; 229():115232. PubMed ID: 36963327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods.
    Moon I; Yi F; Lee YH; Javidi B; Boss D; Marquet P
    Opt Express; 2013 Dec; 21(25):30947-57. PubMed ID: 24514667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A practical criterion for focusing of unstained cell samples using a digital holographic microscope.
    Malik R; Sharma P; Poulose S; Ahlawat S; Khare K
    J Microsc; 2020 Aug; 279(2):114-122. PubMed ID: 32441768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells.
    Moon I; Javidi B; Yi F; Boss D; Marquet P
    Opt Express; 2012 Apr; 20(9):10295-309. PubMed ID: 22535119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-speed quantitative 3D imaging by dual-illumination holographic microscopy.
    Donnarumma D; Rawat N; Brodoline A
    Microsc Res Tech; 2018 Dec; 81(12):1361-1365. PubMed ID: 30431202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digital reconstruction based on angular spectrum diffraction with the ridge of wavelet transform in holographic phase-contrast microscopy.
    Weng J; Zhong J; Hu C
    Opt Express; 2008 Dec; 16(26):21971-81. PubMed ID: 19104632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D morphometry of red blood cells by digital holography.
    Memmolo P; Miccio L; Merola F; Gennari O; Netti PA; Ferraro P
    Cytometry A; 2014 Dec; 85(12):1030-6. PubMed ID: 25242067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated tracking of temporal displacements of a red blood cell obtained by time-lapse digital holographic microscopy.
    Moon I; Yi F; Rappaz B
    Appl Opt; 2016 Jan; 55(3):A86-94. PubMed ID: 26835962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Movies of cellular and sub-cellular motion by digital holographic microscopy.
    Mann CJ; Yu L; Kim MK
    Biomed Eng Online; 2006 Mar; 5():21. PubMed ID: 16556319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human red blood cell recognition enhancement with three-dimensional morphological features obtained by digital holographic imaging.
    Jaferzadeh K; Moon I
    J Biomed Opt; 2016 Dec; 21(12):126015. PubMed ID: 28006044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 4D holographic microscopy of zebrafish larvae microcirculation.
    Donnarumma D; Brodoline A; Alexandre D; Gross M
    Opt Express; 2016 Nov; 24(23):26887-26900. PubMed ID: 27857417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy.
    Choi YS; Lee SJ
    Appl Opt; 2009 Jun; 48(16):2983-90. PubMed ID: 19488109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-line digital holographic imaging in volume holographic microscopy.
    Zhai X; Lin WT; Chen HH; Wang PH; Yeh LH; Tsai JC; Singh VR; Luo Y
    Opt Lett; 2015 Dec; 40(23):5542-5. PubMed ID: 26625046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digital inline holographic microscopy (DIHM) of weakly-scattering subjects.
    Giuliano CB; Zhang R; Wilson LG
    J Vis Exp; 2014 Feb; (84):e50488. PubMed ID: 24561665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recording and reconstruction of a color holographic image by using digital lensless Fourier transform holography.
    Zhao J; Jiang H; Di J
    Opt Express; 2008 Feb; 16(4):2514-9. PubMed ID: 18542331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research on object-plane constraints and hologram expansion in phase retrieval algorithms for continuous-wave terahertz inline digital holography reconstruction.
    Hu J; Li Q; Cui S
    Appl Opt; 2014 Oct; 53(30):7112-9. PubMed ID: 25402801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Open-source, cost-effective, portable, 3D-printed digital lensless holographic microscope.
    Tobon-Maya H; Zapata-Valencia S; Zora-Guzmán E; Buitrago-Duque C; Garcia-Sucerquia J
    Appl Opt; 2021 Feb; 60(4):A205-A214. PubMed ID: 33690371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition and classification of red blood cells using digital holographic microscopy and data clustering with discriminant analysis.
    Liu R; Dey DK; Boss D; Marquet P; Javidi B
    J Opt Soc Am A Opt Image Sci Vis; 2011 Jun; 28(6):1204-10. PubMed ID: 21643406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.