BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35802061)

  • 1. 3D printing of heterogeneous microfibers with multi-hollow structure via microfluidic spinning.
    Li W; Yao K; Tian L; Xue C; Zhang X; Gao X
    J Tissue Eng Regen Med; 2022 Oct; 16(10):913-922. PubMed ID: 35802061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfiber Fabricated via Microfluidic Spinning toward Tissue Engineering Applications.
    Tian L; Ma J; Li W; Zhang X; Gao X
    Macromol Biosci; 2023 Mar; 23(3):e2200429. PubMed ID: 36543751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile Fabrication of Hollow Hydrogel Microfiber via 3D Printing-Assisted Microfluidics and Its Application as a Biomimetic Blood Capillary.
    Lan D; Shang Y; Su H; Liang M; Liu Y; Li H; Feng Q; Cao X; Dong H
    ACS Biomater Sci Eng; 2021 Oct; 7(10):4971-4981. PubMed ID: 34503336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple Spinning of Heterogeneous Hollow Microfibers on Chip.
    Yu Y; Wei W; Wang Y; Xu C; Guo Y; Qin J
    Adv Mater; 2016 Aug; 28(31):6649-55. PubMed ID: 27185309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A flexible microfluidic strategy to generate grooved microfibers for guiding cell alignment.
    Zhao M; Liu H; Zhang X; Wang H; Tao T; Qin J
    Biomater Sci; 2021 Jul; 9(14):4880-4890. PubMed ID: 34152350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.
    Attalla R; Ling C; Selvaganapathy P
    Biomed Microdevices; 2016 Feb; 18(1):17. PubMed ID: 26842949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic strategy to fabricate ultra-thin polyelectrolyte hollow microfibers as 3D cellular carriers.
    Liu H; Wang Y; Chen W; Yu Y; Jiang L; Qin J
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109705. PubMed ID: 31499950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D bioprinting of heterogeneous bi- and tri-layered hollow channels within gel scaffolds using scalable multi-axial microfluidic extrusion nozzle.
    Attalla R; Puersten E; Jain N; Selvaganapathy PR
    Biofabrication; 2018 Dec; 11(1):015012. PubMed ID: 30537688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of capillary microfluidics for spinning cell-laden microfibers.
    Yu Y; Shang L; Guo J; Wang J; Zhao Y
    Nat Protoc; 2018 Nov; 13(11):2557-2579. PubMed ID: 30353174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Printing of Tunable Hollow Microfibers for Vascular Tissue Engineering.
    Wu Z; Cai H; Ao Z; Xu J; Heaps S; Guo F
    Adv Mater Technol; 2021 Aug; 6(8):. PubMed ID: 34458563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple Fabrication of Multicomponent Heterogeneous Fibers for Cell Co-Culture via Microfluidic Spinning.
    Yao K; Li W; Li K; Wu Q; Gu Y; Zhao L; Zhang Y; Gao X
    Macromol Biosci; 2020 Mar; 20(3):e1900395. PubMed ID: 32141708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Fabrication of Bioinspired Cavity-Microfibers for 3D Scaffolds.
    Tian Y; Wang J; Wang L
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29219-29226. PubMed ID: 30113807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Printing of Three-Dimensional Graphene Electroactive Microfibrous Scaffolds.
    Qing H; Ji Y; Li W; Zhao G; Yang Q; Zhang X; Luo Z; Lu TJ; Jin G; Xu F
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2049-2058. PubMed ID: 31799832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Fabrication of Bio-Inspired Microfibers with Controllable Magnetic Spindle-Knots for 3D Assembly and Water Collection.
    He XH; Wang W; Liu YM; Jiang MY; Wu F; Deng K; Liu Z; Ju XJ; Xie R; Chu LY
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17471-81. PubMed ID: 26192108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vascular-like network prepared using hollow hydrogel microfibers.
    Takei T; Kitazono Z; Ozuno Y; Yoshinaga T; Nishimata H; Yoshida M
    J Biosci Bioeng; 2016 Mar; 121(3):336-40. PubMed ID: 26199226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrohydrodynamic-direct-printed cell-laden microfibrous structure using alginate-based bioink for effective myotube formation.
    Yeo M; Kim G
    Carbohydr Polym; 2021 Nov; 272():118444. PubMed ID: 34420709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled Fabrication of Bioactive Microfibers for Creating Tissue Constructs Using Microfluidic Techniques.
    Cheng Y; Yu Y; Fu F; Wang J; Shang L; Gu Z; Zhao Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1080-6. PubMed ID: 26741731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous Fabrication and Assembly of Spatial Cell-Laden Fibers for a Tissue-Like Construct via a Photolithographic-Based Microfluidic Chip.
    Wei D; Sun J; Bolderson J; Zhong M; Dalby MJ; Cusack M; Yin H; Fan H; Zhang X
    ACS Appl Mater Interfaces; 2017 May; 9(17):14606-14617. PubMed ID: 28157291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printed concentrated alginate/GelMA hollow-fibers-packed scaffolds with nano apatite coatings for bone tissue engineering.
    Luo Y; Chen B; Zhang X; Huang S; Wa Q
    Int J Biol Macromol; 2022 Mar; 202():366-374. PubMed ID: 35063479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic Assembly of Astrocyte Cells in Conductive Hollow Microfibers.
    Ouedraogo LJ; Trznadel MJ; Kling M; Nasirian V; Borst AG; Shirsavar MA; Makowski A; McNamara MC; Montazami R; Hashemi NN
    Adv Biol (Weinh); 2024 Feb; 8(2):e2300455. PubMed ID: 37953458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.