BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35802223)

  • 1. Robot-assisted ex vivo neobladder reconstruction: preliminary results of surgical skill evaluation.
    Chen Z; Terlizzi S; Da Col T; Marzullo A; Catellani M; Ferrigno G; De Momi E
    Int J Comput Assist Radiol Surg; 2022 Dec; 17(12):2315-2323. PubMed ID: 35802223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Objective assessment of intraoperative skills for robot-assisted partial nephrectomy (RAPN).
    Farinha R; Breda A; Porter J; Mottrie A; Van Cleynenbreugel B; Vander Sloten J; Mottaran A; Gallagher AG
    J Robot Surg; 2023 Aug; 17(4):1401-1409. PubMed ID: 36689078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Objective assessment based on motion-related metrics and technical performance in laparoscopic suturing.
    Sánchez-Margallo JA; Sánchez-Margallo FM; Oropesa I; Enciso S; Gómez EJ
    Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):307-314. PubMed ID: 27423649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated robot-assisted surgical skill evaluation: Predictive analytics approach.
    Fard MJ; Ameri S; Darin Ellis R; Chinnam RB; Pandya AK; Klein MD
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 28660725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surgical tooltip motion metrics assessment using virtual marker: an objective approach to skill assessment for minimally invasive surgery.
    Aghazadeh F; Zheng B; Tavakoli M; Rouhani H
    Int J Comput Assist Radiol Surg; 2023 Dec; 18(12):2191-2202. PubMed ID: 37597089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of laparoscopic and robotic assisted suturing performance by experts and novices.
    Chandra V; Nehra D; Parent R; Woo R; Reyes R; Hernandez-Boussard T; Dutta S
    Surgery; 2010 Jun; 147(6):830-9. PubMed ID: 20045162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multi-camera, multi-view system for training and skill assessment for robot-assisted surgery.
    Abdelaal AE; Avinash A; Kalia M; Hager GD; Salcudean SE
    Int J Comput Assist Radiol Surg; 2020 Aug; 15(8):1369-1377. PubMed ID: 32430693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of video playback speed on surgeon technical skill perception.
    Kelly JD; Petersen A; Lendvay TS; Kowalewski TM
    Int J Comput Assist Radiol Surg; 2020 May; 15(5):739-747. PubMed ID: 32297088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viewpoint matters: objective performance metrics for surgeon endoscope control during robot-assisted surgery.
    Jarc AM; Curet MJ
    Surg Endosc; 2017 Mar; 31(3):1192-1202. PubMed ID: 27422247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal clustering of surgical activities in robot-assisted surgery.
    Zia A; Zhang C; Xiong X; Jarc AM
    Int J Comput Assist Radiol Surg; 2017 Jul; 12(7):1171-1178. PubMed ID: 28477279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a marker-less, intra-operative, augmented reality guidance system for robot-assisted laparoscopic radical prostatectomy.
    Kalia M; Mathur P; Tsang K; Black P; Navab N; Salcudean S
    Int J Comput Assist Radiol Surg; 2020 Jul; 15(7):1225-1233. PubMed ID: 32500450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initial experience using a robotic-driven laparoscopic needle holder with ergonomic handle: assessment of surgeons' task performance and ergonomics.
    Sánchez-Margallo JA; Sánchez-Margallo FM
    Int J Comput Assist Radiol Surg; 2017 Dec; 12(12):2069-2077. PubMed ID: 28695479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and Validation of Objective Performance Metrics for Robot-Assisted Radical Prostatectomy: A Pilot Study.
    Hung AJ; Chen J; Jarc A; Hatcher D; Djaladat H; Gill IS
    J Urol; 2018 Jan; 199(1):296-304. PubMed ID: 28765067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Contact Forces and Robot Arm Accelerations to Automatically Rate Surgeon Skill at Peg Transfer.
    Brown JD; O Brien CE; Leung SC; Dumon KR; Lee DI; Kuchenbecker KJ
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2263-2275. PubMed ID: 28113295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Movement-level process modeling of microsurgical bimanual and unimanual tasks.
    Koskinen J; Huotarinen A; Elomaa AP; Zheng B; Bednarik R
    Int J Comput Assist Radiol Surg; 2022 Feb; 17(2):305-314. PubMed ID: 34913139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Objective assessment of robotic surgical skill using instrument contact vibrations.
    Gomez ED; Aggarwal R; McMahan W; Bark K; Kuchenbecker KJ
    Surg Endosc; 2016 Apr; 30(4):1419-31. PubMed ID: 26201410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preclinical evaluation of a markerless, real-time, augmented reality guidance system for robot-assisted radical prostatectomy.
    Kalia M; Avinash A; Navab N; Salcudean S
    Int J Comput Assist Radiol Surg; 2021 Jul; 16(7):1181-1188. PubMed ID: 34076803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and Validation of the Metric-Based Assessment of a Robotic Dissection Task on an Avian Model.
    Puliatti S; Amato M; Mazzone E; Rosiello G; De Groote R; Berquin C; Piazza P; Farinha R; Mottrie A; Gallagher AG
    J Surg Res; 2022 Sep; 277():224-234. PubMed ID: 35504150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual Reality Warm-up Before Robot-assisted Surgery: A Randomized Controlled Trial.
    Kelly JD; Kowalewski TM; Brand T; French A; Nash M; Meryman L; Heller N; Organ N; George E; Smith R; Sorensen MD; Comstock B; Lendvay TS
    J Surg Res; 2021 Aug; 264():107-116. PubMed ID: 33799119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robotic Assistance Confers Ambidexterity to Laparoscopic Surgeons.
    Choussein S; Srouji SS; Farland LV; Wietsma A; Missmer SA; Hollis M; Yu RN; Pozner CN; Gargiulo AR
    J Minim Invasive Gynecol; 2018 Jan; 25(1):76-83. PubMed ID: 28734971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.