These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35802548)

  • 1. Industrial Process Monitoring Based on Dynamic Overcomplete Broad Learning Network.
    Peng C; Ying X; ZhiQi H
    IEEE Trans Neural Netw Learn Syst; 2024 Feb; 35(2):1761-1772. PubMed ID: 35802548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Batch process fault detection and identification based on discriminant global preserving kernel slow feature analysis.
    Zhang H; Tian X; Deng X; Cao Y
    ISA Trans; 2018 Aug; 79():108-126. PubMed ID: 29776590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Batch process fault detection for multi-stage broad learning system.
    Peng C; Lu R; Kang O; Kai W
    Neural Netw; 2020 Sep; 129():298-312. PubMed ID: 32574976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network.
    Wang Y; Pan Z; Yuan X; Yang C; Gui W
    ISA Trans; 2020 Jan; 96():457-467. PubMed ID: 31324340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fault Detection and Isolation of Non-Gaussian and Nonlinear Processes Based on Statistics Pattern Analysis and the
    Zhou Z; Wang J; Yang C; Wen C; Li Z
    ACS Omega; 2022 Jun; 7(22):18623-18637. PubMed ID: 35694521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KECA Similarity-Based Monitoring and Diagnosis of Faults in Multi-Phase Batch Processes.
    Qi Y; Meng X; Lu C; Gao X; Wang L
    Entropy (Basel); 2019 Jan; 21(2):. PubMed ID: 33266837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Feature Extraction-Based Quadratic Discriminant Analysis for Industrial Process Fault Classification and Diagnosis.
    Li H; Jia M; Mao Z
    Entropy (Basel); 2023 Dec; 25(12):. PubMed ID: 38136544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fault Detection of Non-Gaussian and Nonlinear Processes Based on Independent Slow Feature Analysis.
    Li C; Zhou Z; Wen C; Li Z
    ACS Omega; 2022 Mar; 7(8):6978-6990. PubMed ID: 35252689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model Fusion and Multiscale Feature Learning for Fault Diagnosis of Industrial Processes.
    Liu K; Lu N; Wu F; Zhang R; Gao F
    IEEE Trans Cybern; 2023 Oct; 53(10):6465-6478. PubMed ID: 35687638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive soft sensor using stacking approximate kernel based BLS for batch processes.
    Zhao J; Yang M; Xu Z; Wang J; Yang X; Wu X
    Sci Rep; 2024 Jun; 14(1):12817. PubMed ID: 38834770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soft sensor design based on phase partition ensemble of LSSVR models for nonlinear batch processes.
    Sheng XC; Xiong WL
    Math Biosci Eng; 2019 Dec; 17(2):1901-1921. PubMed ID: 32233614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring Nonlinear and Non-Gaussian Processes Using Gaussian Mixture Model-Based Weighted Kernel Independent Component Analysis.
    Cai L; Tian X; Chen S
    IEEE Trans Neural Netw Learn Syst; 2017 Jan; 28(1):122-135. PubMed ID: 26685274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fault Detection of Urban Wastewater Treatment Process Based on Combination of Deep Information and Transformer Network.
    Peng C; FanChao M
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):8124-8133. PubMed ID: 37015564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical monitoring for non-Gaussian processes based on MICA-KDR method.
    Lan T; Tong C; Yu H; Shi X
    ISA Trans; 2019 Nov; 94():164-173. PubMed ID: 31078289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Batch Process Monitoring Based on Time-Slice Latent Variable Correlation Analysis.
    Du L; Jin W; Wang Y; Jiang Q
    ACS Omega; 2022 Nov; 7(45):41069-41081. PubMed ID: 36406484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Spatiotemporal Process Feature Learning Method Based On the Pseudo-Siamese Network for Complex Chemical Process Concurrent Condition Monitoring.
    Xu Y; Jia M; Mao Z
    ACS Omega; 2022 Oct; 7(41):36728-36747. PubMed ID: 36278083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fault Detection for Nonlinear Process With Deterministic Disturbances: A Just-In-Time Learning Based Data Driven Method.
    Yin S; Gao H; Qiu J; Kaynak O
    IEEE Trans Cybern; 2017 Nov; 47(11):3649-3657. PubMed ID: 27416612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active features extracted by deep belief network for process monitoring.
    Yu J; Yan X
    ISA Trans; 2019 Jan; 84():247-261. PubMed ID: 30366715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate and Efficient Large-Scale Multi-Label Learning With Reduced Feature Broad Learning System Using Label Correlation.
    Huang J; Vong CM; Chen CLP; Zhou Y
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; 34(12):10240-10253. PubMed ID: 35436203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rolling Bearing Fault Diagnosis Based on Markov Transition Field and Residual Network.
    Yan J; Kan J; Luo H
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.