These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 35802653)
21. Multilocus analysis of Cryptosporidium hominis and Cryptosporidium parvum isolates from sporadic and outbreak-related human cases and C. parvum isolates from sporadic livestock cases in the United Kingdom. Leoni F; Mallon ME; Smith HV; Tait A; McLauchlin J J Clin Microbiol; 2007 Oct; 45(10):3286-94. PubMed ID: 17687021 [TBL] [Abstract][Full Text] [Related]
22. First description of Cryptosporidium hominis GP60 genotype IkA20G1 and Cryptosporidium parvum GP60 genotypes IIaA18G3R1 and IIaA15G2R1 in foals in Brazil. Inácio SV; Widmer G; de Brito RL; Zucatto AS; de Aquino MC; Oliveira BC; Nakamura AA; Neto LD; Carvalho JG; Gomes JF; Meireles MV; Bresciani KD Vet Parasitol; 2017 Jan; 233():48-51. PubMed ID: 28043388 [TBL] [Abstract][Full Text] [Related]
23. Population genetic characterisation of dominant Cryptosporidium parvum subtype IIaA15G2R1. Feng Y; Torres E; Li N; Wang L; Bowman D; Xiao L Int J Parasitol; 2013 Dec; 43(14):1141-7. PubMed ID: 24126186 [TBL] [Abstract][Full Text] [Related]
24. Multilocus fragment typing and genetic structure of Cryptosporidium parvum Isolates from diarrheic preweaned calves in Spain. Quílez J; Vergara-Castiblanco C; Monteagudo L; Del Cacho E; Sánchez-Acedo C Appl Environ Microbiol; 2011 Nov; 77(21):7779-86. PubMed ID: 21908632 [TBL] [Abstract][Full Text] [Related]
25. Meta-analysis of a polymorphic surface glycoprotein of the parasitic protozoa Cryptosporidium parvum and Cryptosporidium hominis. Widmer G Epidemiol Infect; 2009 Dec; 137(12):1800-8. PubMed ID: 19527551 [TBL] [Abstract][Full Text] [Related]
26. Assessment of polymorphic genetic markers for multi-locus typing of Cryptosporidium parvum and Cryptosporidium hominis. Robinson G; Chalmers RM Exp Parasitol; 2012 Oct; 132(2):200-15. PubMed ID: 22781277 [TBL] [Abstract][Full Text] [Related]
27. Molecular epidemiology of Cryptosporidium in humans and cattle in The Netherlands. Wielinga PR; de Vries A; van der Goot TH; Mank T; Mars MH; Kortbeek LM; van der Giessen JW Int J Parasitol; 2008 Jun; 38(7):809-17. PubMed ID: 18054936 [TBL] [Abstract][Full Text] [Related]
28. Comparative genomic analysis reveals occurrence of genetic recombination in virulent Cryptosporidium hominis subtypes and telomeric gene duplications in Cryptosporidium parvum. Guo Y; Tang K; Rowe LA; Li N; Roellig DM; Knipe K; Frace M; Yang C; Feng Y; Xiao L BMC Genomics; 2015 Apr; 16(1):320. PubMed ID: 25903370 [TBL] [Abstract][Full Text] [Related]
29. Common occurrence of Cryptosporidium hominis in horses and donkeys. Jian F; Liu A; Wang R; Zhang S; Qi M; Zhao W; Shi Y; Wang J; Wei J; Zhang L; Xiao L Infect Genet Evol; 2016 Sep; 43():261-6. PubMed ID: 27264727 [TBL] [Abstract][Full Text] [Related]
30. Genetic diversity of Cryptosporidium isolates from patients in North India. Sharma P; Sharma A; Sehgal R; Malla N; Khurana S Int J Infect Dis; 2013 Aug; 17(8):e601-5. PubMed ID: 23332591 [TBL] [Abstract][Full Text] [Related]
31. Population structure of natural and propagated isolates of Cryptosporidium parvum, C. hominis and C. meleagridis. Widmer G; Ras R; Chalmers RM; Elwin K; Desoky E; Badawy A Environ Microbiol; 2015 Apr; 17(4):984-93. PubMed ID: 24593863 [TBL] [Abstract][Full Text] [Related]
32. Next Generation Sequencing uncovers within-host differences in the genetic diversity of Cryptosporidium gp60 subtypes. Zahedi A; Gofton AW; Jian F; Paparini A; Oskam C; Ball A; Robertson I; Ryan U Int J Parasitol; 2017 Sep; 47(10-11):601-607. PubMed ID: 28495122 [TBL] [Abstract][Full Text] [Related]
33. High applicability of a novel method for gp60-based subtyping of Cryptosporidium meleagridis. Stensvold CR; Beser J; Axén C; Lebbad M J Clin Microbiol; 2014 Jul; 52(7):2311-9. PubMed ID: 24740082 [TBL] [Abstract][Full Text] [Related]
34. Multilocus sequence typing and population genetic structure of Cryptosporidium cuniculus in rabbits in Heilongjiang Province, China. Yang Z; Yang F; Wang J; Cao J; Zhao W; Gong B; Yan J; Zhang W; Liu A; Shen Y Infect Genet Evol; 2018 Oct; 64():249-253. PubMed ID: 29981901 [TBL] [Abstract][Full Text] [Related]
35. A review of the molecular epidemiology of Cryptosporidium spp. and Giardia duodenalis in the Middle East and North Africa (MENA) region. Hijjawi N; Zahedi A; Al-Falah M; Ryan U Infect Genet Evol; 2022 Mar; 98():105212. PubMed ID: 35065302 [TBL] [Abstract][Full Text] [Related]
36. Intra-Species Genetic Diversity and Clonal Structure of Cryptosporidium parvum in Sheep Farms in a Confined Geographical Area in Northeastern Spain. Ramo A; Monteagudo LV; Del Cacho E; Sánchez-Acedo C; Quílez J PLoS One; 2016; 11(5):e0155336. PubMed ID: 27176718 [TBL] [Abstract][Full Text] [Related]
37. Multilocus sequence typing of an emerging Cryptosporidium hominis subtype in the United States. Feng Y; Tiao N; Li N; Hlavsa M; Xiao L J Clin Microbiol; 2014 Feb; 52(2):524-30. PubMed ID: 24478483 [TBL] [Abstract][Full Text] [Related]
38. Identification of Cryptosporidium subtype isolates from HIV-seropositive patients in Equatorial Guinea. Blanco MA; Montoya A; Iborra A; Fuentes I Trans R Soc Trop Med Hyg; 2014 Sep; 108(9):594-6. PubMed ID: 24996820 [TBL] [Abstract][Full Text] [Related]
39. Genetic diversity of Cryptosporidium spp. within a remote population of Soay Sheep on St. Kilda Islands, Scotland. Connelly L; Craig BH; Jones B; Alexander CL Appl Environ Microbiol; 2013 Apr; 79(7):2240-6. PubMed ID: 23354707 [TBL] [Abstract][Full Text] [Related]
40. Genetic Diversity of Cryptosporidium in Children in an Urban Informal Settlement of Nairobi, Kenya. Mbae C; Mulinge E; Waruru A; Ngugi B; Wainaina J; Kariuki S PLoS One; 2015; 10(12):e0142055. PubMed ID: 26691531 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]