BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35802670)

  • 1. A label-free and low-power microelectronic impedance spectroscopy for characterization of exosomes.
    Shi L; Esfandiari L
    PLoS One; 2022; 17(7):e0270844. PubMed ID: 35802670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Label-Free Electrical Impedance Spectroscopy for Detection of Clusters of Extracellular Vesicles Based on Their Unique Dielectric Properties.
    Zhang Y; Murakami K; Borra VJ; Ozen MO; Demirci U; Nakamura T; Esfandiari L
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Electrokinetically-Driven Microchip for Rapid Entrapment and Detection of Nanovesicles.
    Shi L; Esfandiari L
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33374467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concepts, electrode configuration, characterization, and data analytics of electric and electrochemical microfluidic platforms: a review.
    Nguyen TH; Nguyen HA; Tran Thi YV; Hoang Tran D; Cao H; Chu Duc T; Bui TT; Do Quang L
    Analyst; 2023 May; 148(9):1912-1929. PubMed ID: 36928639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid and label-free isolation of small extracellular vesicles from biofluids utilizing a novel insulator based dielectrophoretic device.
    Shi L; Kuhnell D; Borra VJ; Langevin SM; Nakamura T; Esfandiari L
    Lab Chip; 2019 Nov; 19(21):3726-3734. PubMed ID: 31588942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrokinetically Driven Exosome Separation and Concentration Using Dielectrophoretic-Enhanced PDMS-Based Microfluidics.
    Ayala-Mar S; Perez-Gonzalez VH; Mata-Gómez MA; Gallo-Villanueva RC; González-Valdez J
    Anal Chem; 2019 Dec; 91(23):14975-14982. PubMed ID: 31738514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free virus identification and characterization using electrochemical impedance spectroscopy.
    Poenar DP; Iliescu C; Boulaire J; Yu H
    Electrophoresis; 2014 Feb; 35(2-3):433-40. PubMed ID: 24285469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of subcellular morphology of single yeast cells using high frequency microfluidic impedance cytometer.
    Haandbæk N; Bürgel SC; Heer F; Hierlemann A
    Lab Chip; 2014 Jan; 14(2):369-77. PubMed ID: 24264643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-chip latex agglutination immunoassay readout by electrochemical impedance spectroscopy.
    Gupta S; Kilpatrick PK; Melvin E; Velev OD
    Lab Chip; 2012 Nov; 12(21):4279-86. PubMed ID: 22930134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards the realization of label-free biosensors through impedance spectroscopy integrated with IDES technology.
    Di Capua R; Barra M; Santoro F; Viggiano D; Ambrosino P; Soldovieri MV; Taglialatela M; Cassinese A
    Eur Biophys J; 2012 Feb; 41(2):249-56. PubMed ID: 22237602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-Chip Impedance Spectroscopy of Malaria-Infected Red Blood Cells.
    Panklang N; Techaumnat B; Tanthanuch N; Chotivanich K; Horprathum M; Nakano M
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Microfluidic System for Electrochemical Impedance Spectroscopy Assessment of Cell Culture Performance: Design and Development of New Electrode Material.
    Chmayssem A; Tanase CE; Verplanck N; Gougis M; Mourier V; Zebda A; Ghaemmaghami AM; Mailley P
    Biosensors (Basel); 2022 Jun; 12(7):. PubMed ID: 35884254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resistive pulse sensing device with embedded nanochannel (nanochannel-RPS) for label-free biomolecule and bionanoparticle analysis.
    Han Z; Liu J; Liu Z; Pan W; Yang Y; Chen X; Gao Y; Duan X
    Nanotechnology; 2021 Apr; 32(29):. PubMed ID: 33823494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro-Electrical Impedance Spectroscopy and Identification of Patient-Derived, Dissociated Tumor Cells.
    Desai SP; Coston A; Berlin A
    IEEE Trans Nanobioscience; 2019 Jul; 18(3):369-372. PubMed ID: 31180894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A low voltage nanopipette dielectrophoretic device for rapid entrapment of nanoparticles and exosomes extracted from plasma of healthy donors.
    Shi L; Rana A; Esfandiari L
    Sci Rep; 2018 Apr; 8(1):6751. PubMed ID: 29712935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in Electrical Impedance Sensing Technology for Single-Cell Analysis.
    Zhang Z; Huang X; Liu K; Lan T; Wang Z; Zhu Z
    Biosensors (Basel); 2021 Nov; 11(11):. PubMed ID: 34821686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of exosomes from whole blood by integrating acoustics and microfluidics.
    Wu M; Ouyang Y; Wang Z; Zhang R; Huang PH; Chen C; Li H; Li P; Quinn D; Dao M; Suresh S; Sadovsky Y; Huang TJ
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10584-10589. PubMed ID: 28923936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous-flow label-free size fractionation of extracellular vesicles through electrothermal fluid rolls and dielectrophoresis synergistically integrated in a microfluidic device.
    Bu Y; Wang J; Ni S; Guo Y; Yobas L
    Lab Chip; 2023 May; 23(10):2421-2433. PubMed ID: 36951129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dielectrophoretic and Electrical Impedance Differentiation of Cancerous Cells Based on Biophysical Phenotype.
    Turcan I; Caras I; Schreiner TG; Tucureanu C; Salageanu A; Vasile V; Avram M; Tincu B; Olariu MA
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.