These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35802670)

  • 21. Impedimetric Microfluidic Sensor-in-a-Tube for Label-Free Immune Cell Analysis.
    Egunov AI; Dou Z; Karnaushenko DD; Hebenstreit F; Kretschmann N; Akgün K; Ziemssen T; Karnaushenko D; Medina-Sánchez M; Schmidt OG
    Small; 2021 Feb; 17(5):e2002549. PubMed ID: 33448115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-Efficiency Single-Cell Electrical Impedance Spectroscopy.
    Feng Y; Huang L; Zhao P; Liang F; Wang W
    Methods Mol Biol; 2023; 2644():81-97. PubMed ID: 37142917
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation, characterisation and detection of breath-derived extracellular vesicles.
    Dobhal G; Datta A; Ayupova D; Teesdale-Spittle P; Goreham RV
    Sci Rep; 2020 Oct; 10(1):17381. PubMed ID: 33060613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid purification and multiparametric characterization of circulating small extracellular vesicles utilizing a label-free lab-on-a-chip device.
    Sharma M; Sheth M; Poling HM; Kuhnell D; Langevin SM; Esfandiari L
    Sci Rep; 2023 Oct; 13(1):18293. PubMed ID: 37880299
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Label-free detection of telomerase activity in HeLa cells using electrochemical impedance spectroscopy.
    Yang W; Zhu X; Liu Q; Lin Z; Qiu B; Chen G
    Chem Commun (Camb); 2011 Mar; 47(11):3129-31. PubMed ID: 21267487
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of DNA concentration on the interfacial electrode impedance.
    Cho S; Oh Y; Ahn SM
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7291-4. PubMed ID: 24245245
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic channel sensory system for electro-addressing cell location, determining confluency, and quantifying a general number of cells.
    Rapier CE; Jagadeesan S; Vatine G; Ben-Yoav H
    Sci Rep; 2022 Feb; 12(1):3248. PubMed ID: 35228609
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Microfluidic Device Integrating Impedance Flow Cytometry and Electric Impedance Spectroscopy for High-Efficiency Single-Cell Electrical Property Measurement.
    Feng Y; Huang L; Zhao P; Liang F; Wang W
    Anal Chem; 2019 Dec; 91(23):15204-15212. PubMed ID: 31702127
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A review of impedance measurements of whole cells.
    Xu Y; Xie X; Duan Y; Wang L; Cheng Z; Cheng J
    Biosens Bioelectron; 2016 Mar; 77():824-36. PubMed ID: 26513290
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing the Impedance of a Biological Tissue with PEDOT:PSS-Coated Metal Electrodes: Effect of Electrode Size on Sensing Efficiency.
    Koutsouras DA; Lingstedt LV; Lieberth K; Reinholz J; Mailänder V; Blom PWM; Gkoupidenis P
    Adv Healthc Mater; 2019 Dec; 8(23):e1901215. PubMed ID: 31701673
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chronic impedance spectroscopy of an endovascular stent-electrode array.
    Opie NL; John SE; Rind GS; Ronayne SM; Grayden DB; Burkitt AN; May CN; O'Brien TJ; Oxley TJ
    J Neural Eng; 2016 Aug; 13(4):046020. PubMed ID: 27378157
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dielectric spectroscopy of red blood cells in sickle cell disease.
    Liu J; Qiang Y; Du E
    Electrophoresis; 2021 Mar; 42(5):667-675. PubMed ID: 33314275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impedance-Readout Integrated Circuits for Electrical Impedance Spectroscopy: Methodological Review.
    Cheon SI; Choi H; Kang H; Suh JH; Park S; Kweon SJ; Je M; Ha S
    IEEE Trans Biomed Circuits Syst; 2024 Feb; 18(1):215-232. PubMed ID: 37751341
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Miniaturized Sensors for Detection of Ethanol in Water Based on Electrical Impedance Spectroscopy and Resonant Perturbation Method-A Comparative Study.
    Leo A; Monteduro AG; Rizzato S; Milone A; Maruccio G
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408357
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization, fabrication, and characterization of four electrode-based sensors for blood impedance measurement.
    Pradhan R; Raisa SA; Kumar P; Kalkal A; Kumar N; Packirisamy G; Manhas S
    Biomed Microdevices; 2021 Jan; 23(1):9. PubMed ID: 33449205
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monitoring Single S. cerevisiae Cells with Multifrequency Electrical Impedance Spectroscopy in an Electrode-Integrated Microfluidic Device.
    Zhu Z; Geng Y; Wang Y
    Methods Mol Biol; 2021; 2189():105-118. PubMed ID: 33180297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discrimination of tumor cell type based on cytometric detection of dielectric properties.
    Tang D; Jiang L; Xiang N; Ni Z
    Talanta; 2022 Aug; 246():123524. PubMed ID: 35533569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of Cell Death Using an Impedance-Based Microfluidic Device.
    Mansoorifar A; Koklu A; Beskok A
    Anal Chem; 2019 Mar; 91(6):4140-4148. PubMed ID: 30793881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wide-band Electrical Impedance Spectroscopy (EIS) Measures S. pombe Cell Growth in vivo.
    Zhu Z; Frey O; Hierlemann A
    Methods Mol Biol; 2018; 1721():135-153. PubMed ID: 29423854
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impedance spectroscopy-based cell/particle position detection in microfluidic systems.
    Wang H; Sobahi N; Han A
    Lab Chip; 2017 Mar; 17(7):1264-1269. PubMed ID: 28267168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.