BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 35803024)

  • 1. Distinct biochemical properties of the class I histone deacetylase complexes.
    Lee K; Whedon SD; Wang ZA; Cole PA
    Curr Opin Chem Biol; 2022 Oct; 70():102179. PubMed ID: 35803024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverse nucleosome Site-Selectivity among histone deacetylase complexes.
    Wang ZA; Millard CJ; Lin CL; Gurnett JE; Wu M; Lee K; Fairall L; Schwabe JW; Cole PA
    Elife; 2020 Jun; 9():. PubMed ID: 32501215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological roles of class I HDAC complex and histone demethylase.
    Hayakawa T; Nakayama J
    J Biomed Biotechnol; 2011; 2011():129383. PubMed ID: 21049000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A potential histone-chaperone activity for the MIER1 histone deacetylase complex.
    Wang S; Fairall L; Pham TK; Ragan TJ; Vashi D; Collins MO; Dominguez C; Schwabe JWR
    Nucleic Acids Res; 2023 Jul; 51(12):6006-6019. PubMed ID: 37099381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro targeting reveals intrinsic histone tail specificity of the Sin3/histone deacetylase and N-CoR/SMRT corepressor complexes.
    Vermeulen M; Carrozza MJ; Lasonder E; Workman JL; Logie C; Stunnenberg HG
    Mol Cell Biol; 2004 Mar; 24(6):2364-72. PubMed ID: 14993276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A feed-forward repression mechanism anchors the Sin3/histone deacetylase and N-CoR/SMRT corepressors on chromatin.
    Vermeulen M; Walter W; Le Guezennec X; Kim J; Edayathumangalam RS; Lasonder E; Luger K; Roeder RG; Logie C; Berger SL; Stunnenberg HG
    Mol Cell Biol; 2006 Jul; 26(14):5226-36. PubMed ID: 16809761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Members of the histone deacetylase superfamily differ in substrate specificity towards small synthetic substrates.
    Riester D; Wegener D; Hildmann C; Schwienhorst A
    Biochem Biophys Res Commun; 2004 Nov; 324(3):1116-23. PubMed ID: 15485670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation.
    Lee MG; Wynder C; Cooch N; Shiekhattar R
    Nature; 2005 Sep; 437(7057):432-5. PubMed ID: 16079794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eloquent silence: developmental functions of Class I histone deacetylases.
    Cunliffe VT
    Curr Opin Genet Dev; 2008 Oct; 18(5):404-10. PubMed ID: 18929655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxamic Acid-Modified Peptide Library Provides Insights into the Molecular Basis for the Substrate Selectivity of HDAC Corepressor Complexes.
    Archibald LJ; Brown EA; Millard CJ; Watson PJ; Robertson NS; Wang S; Schwabe JWR; Jamieson AG
    ACS Chem Biol; 2022 Sep; 17(9):2572-2582. PubMed ID: 35973051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progress in Histone Deacetylase (HDAC) 1 Inhibitors as Anticancer Agent.
    Patel P; Wahan SK; Vishakha S; Kurmi BD; Gupta GD; Rajak H; Asati V
    Curr Cancer Drug Targets; 2022; 23(1):47-70. PubMed ID: 35747969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis.
    Gregoretti IV; Lee YM; Goodson HV
    J Mol Biol; 2004 Apr; 338(1):17-31. PubMed ID: 15050820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in Computer-Assisted Structure-Based Identification and Design of Histone Deacetylases Inhibitors.
    Krishna S; Kumar V; Siddiqi MI
    Curr Top Med Chem; 2016; 16(9):934-47. PubMed ID: 26303428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation.
    Zhang Y; Ng HH; Erdjument-Bromage H; Tempst P; Bird A; Reinberg D
    Genes Dev; 1999 Aug; 13(15):1924-35. PubMed ID: 10444591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting class I histone deacetylases in cancer therapy.
    Delcuve GP; Khan DH; Davie JR
    Expert Opin Ther Targets; 2013 Jan; 17(1):29-41. PubMed ID: 23062071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for the regulation of nucleosome recognition and HDAC activity by histone deacetylase assemblies.
    Lee JH; Bollschweiler D; Schäfer T; Huber R
    Sci Adv; 2021 Jan; 7(2):. PubMed ID: 33523989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inositol phosphates and core subunits of the Sin3L/Rpd3L histone deacetylase (HDAC) complex up-regulate deacetylase activity.
    Marcum RD; Radhakrishnan I
    J Biol Chem; 2019 Sep; 294(38):13928-13938. PubMed ID: 31358618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the Sin3-histone deacetylase complex in growth regulation by the candidate tumor suppressor p33(ING1).
    Kuzmichev A; Zhang Y; Erdjument-Bromage H; Tempst P; Reinberg D
    Mol Cell Biol; 2002 Feb; 22(3):835-48. PubMed ID: 11784859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The MiDAC histone deacetylase complex is essential for embryonic development and has a unique multivalent structure.
    Turnbull RE; Fairall L; Saleh A; Kelsall E; Morris KL; Ragan TJ; Savva CG; Chandru A; Millard CJ; Makarova OV; Smith CJ; Roseman AM; Fry AM; Cowley SM; Schwabe JWR
    Nat Commun; 2020 Jun; 11(1):3252. PubMed ID: 32591534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone tail modifications and noncanonical functions of histones: perspectives in cancer epigenetics.
    Hadnagy A; Beaulieu R; Balicki D
    Mol Cancer Ther; 2008 Apr; 7(4):740-8. PubMed ID: 18413789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.