BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35803049)

  • 1. Three years of warming and rainfall reduction alter leaf physiology but not relative abundance of an annual species in a Mediterranean savanna.
    Rodríguez-Calcerrada J; Chano V; Matías L; Hidalgo-Galvez MD; Cambrollé J; Pérez-Ramos IM
    J Plant Physiol; 2022 Aug; 275():153761. PubMed ID: 35803049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can trees buffer the impact of climate change on pasture production and digestibility of Mediterranean dehesas?
    Hidalgo-Galvez MD; Barkaoui K; Volaire F; Matías L; Cambrollé J; Fernández-Rebollo P; Carbonero MD; Pérez-Ramos IM
    Sci Total Environ; 2022 Aug; 835():155535. PubMed ID: 35489515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the inter- and intra-annual variability of ecosystem evapotranspiration and water use efficiency of an oak savanna and annual grassland subjected to booms and busts in rainfall.
    Baldocchi D; Ma S; Verfaillie J
    Glob Chang Biol; 2021 Jan; 27(2):359-375. PubMed ID: 33091183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactive effects of elevated CO
    Pastore MA; Lee TD; Hobbie SE; Reich PB
    Plant Cell Environ; 2020 Aug; 43(8):1862-1878. PubMed ID: 32400900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trading water for carbon in the future: Effects of elevated CO
    Mueller KE; Ocheltree TW; Kray JA; Bushey JA; Blumenthal DM; Williams DG; Pendall E
    Glob Chang Biol; 2022 Oct; 28(20):5991-6001. PubMed ID: 35751572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulated climate change decreases nutrient resorption from senescing leaves.
    Prieto I; Querejeta JI
    Glob Chang Biol; 2020 Mar; 26(3):1795-1807. PubMed ID: 31701634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate change alters slug abundance but not herbivory in a temperate grassland.
    Weber D; McGrail RK; Carlisle AE; Harwood JD; McCulley RL
    PLoS One; 2023; 18(3):e0283128. PubMed ID: 36917602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological, anatomical and physiological leaf traits of Q. ilex, P. latifolia, P. lentiscus, and M. communis and their response to Mediterranean climate stress factors.
    Gratani L; Catoni R; Varone L
    Bot Stud; 2013 Dec; 54(1):35. PubMed ID: 28510875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drought and warming alter gross primary production allocation and reduce productivity in a widespread pasture grass.
    Chandregowda MH; Tjoelker MG; Power SA; Pendall E
    Plant Cell Environ; 2022 Aug; 45(8):2271-2291. PubMed ID: 35419849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated CO2 and warming effects on grassland plant mortality are determined by the timing of rainfall.
    Hovenden MJ; Newton PCD; Porter M
    Ann Bot; 2017 May; 119(7):1225-1233. PubMed ID: 28334161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal acclimation of leaf dark respiration of beech seedlings experiencing summer drought in high and low light environments.
    Rodríguez-Calcerrada J; Atkin OK; Robson TM; Zaragoza-Castells J; Gil L; Aranda I
    Tree Physiol; 2010 Feb; 30(2):214-24. PubMed ID: 20007131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types.
    Slot M; Kitajima K
    Oecologia; 2015 Mar; 177(3):885-900. PubMed ID: 25481817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shifting plant species composition in response to climate change stabilizes grassland primary production.
    Liu H; Mi Z; Lin L; Wang Y; Zhang Z; Zhang F; Wang H; Liu L; Zhu B; Cao G; Zhao X; Sanders NJ; Classen AT; Reich PB; He JS
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4051-4056. PubMed ID: 29666319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boreal and temperate trees show strong acclimation of respiration to warming.
    Reich PB; Sendall KM; Stefanski A; Wei X; Rich RL; Montgomery RA
    Nature; 2016 Mar; 531(7596):633-6. PubMed ID: 26982730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosynthetic responses to temperature across leaf-canopy-ecosystem scales: a 15-year study in a Californian oak-grass savanna.
    Ma S; Osuna JL; Verfaillie J; Baldocchi DD
    Photosynth Res; 2017 Jun; 132(3):277-291. PubMed ID: 28425026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency.
    Estiarte M; Peñuelas J
    Glob Chang Biol; 2015 Mar; 21(3):1005-17. PubMed ID: 25384459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shift in community structure in an early-successional Mediterranean shrubland driven by long-term experimental warming and drought and natural extreme droughts.
    Liu D; Estiarte M; Ogaya R; Yang X; Peñuelas J
    Glob Chang Biol; 2017 Oct; 23(10):4267-4279. PubMed ID: 28514052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From observations to experiments in phenology research: investigating climate change impacts on trees and shrubs using dormant twigs.
    Primack RB; Laube J; Gallinat AS; Menzel A
    Ann Bot; 2015 Nov; 116(6):889-97. PubMed ID: 25851135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate change alters plant biogeography in Mediterranean prairies along the West Coast, USA.
    Pfeifer-Meister L; Bridgham SD; Reynolds LL; Goklany ME; Wilson HE; Little CJ; Ferguson A; Johnson BR
    Glob Chang Biol; 2016 Feb; 22(2):845-55. PubMed ID: 26222331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination of leaf functional traits under climatic warming in an arid ecosystem.
    Yu H; Chen Y; Zhou G; Xu Z
    BMC Plant Biol; 2022 Sep; 22(1):439. PubMed ID: 36100908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.