BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35803089)

  • 1. Ultra-low concentration of chlorine dioxide regulates stress-caused premature leaf senescence in tobacco by modulating auxin, ethylene, and chlorophyll biosynthesis.
    Huang Y; Li X; Duan Z; Li J; Jiang Y; Cheng S; Xue T; Zhao F; Sheng W; Duan Y
    Plant Physiol Biochem; 2022 Sep; 186():31-39. PubMed ID: 35803089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melatonin Positively Regulates Both Dark- and Age-Induced Leaf Senescence by Reducing ROS Accumulation and Modulating Abscisic Acid and Auxin Biosynthesis in Cucumber Plants.
    Jing T; Liu K; Wang Y; Ai X; Bi H
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of ipt gene controlled by an ethylene and auxin responsive fragment of the LEACO1 promoter increases flower number in transgenic Nicotiana tabacum.
    Khodakovskaya M; Zhao D; Smith W; Li Y; McAvoy R
    Plant Cell Rep; 2006 Nov; 25(11):1181-92. PubMed ID: 16786314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indole-3-acetic acid improves drought tolerance of white clover via activating auxin, abscisic acid and jasmonic acid related genes and inhibiting senescence genes.
    Zhang Y; Li Y; Hassan MJ; Li Z; Peng Y
    BMC Plant Biol; 2020 Apr; 20(1):150. PubMed ID: 32268884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytokinin or ethylene regulation of heat-induced leaf senescence involving transcriptional modulation of WRKY in perennial ryegrass.
    Chen W; Huang B
    Physiol Plant; 2022 Sep; 174(5):e13766. PubMed ID: 36053893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethylene and the regulation of senescence processes in transgenic Nicotiana sylvestris plants.
    Yang TF; Gonzalez-Carranza ZH; Maunders MJ; Roberts JA
    Ann Bot; 2008 Jan; 101(2):301-10. PubMed ID: 17901061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of natural leaf senescence in tobacco (Nicotiana tabacum) plants grown in vitro.
    Uzelac B; Janošević D; Simonović A; Motyka V; Dobrev PI; Budimir S
    Protoplasma; 2016 Mar; 253(2):259-75. PubMed ID: 25837009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential responses of saltbush Atriplex halimus L. exposed to salinity and water stress in relation to senescing hormones abscisic acid and ethylene.
    Hassine AB; Lutts S
    J Plant Physiol; 2010 Nov; 167(17):1448-56. PubMed ID: 20869134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of the CBF2 transcriptional activator in Arabidopsis suppresses the responsiveness of leaf tissue to the stress hormone ethylene.
    Sharabi-Schwager M; Samach A; Porat R
    Plant Biol (Stuttg); 2010 Jul; 12(4):630-8. PubMed ID: 20636906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A soybean dual-specificity kinase, GmSARK, and its Arabidopsis homolog, AtSARK, regulate leaf senescence through synergistic actions of auxin and ethylene.
    Xu F; Meng T; Li P; Yu Y; Cui Y; Wang Y; Gong Q; Wang NN
    Plant Physiol; 2011 Dec; 157(4):2131-53. PubMed ID: 22034630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ACC synthase expression regulates leaf performance and drought tolerance in maize.
    Young TE; Meeley RB; Gallie DR
    Plant J; 2004 Dec; 40(5):813-25. PubMed ID: 15546363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced oxidative stress in the ethylene-insensitive (ein3-1) mutant of Arabidopsis thaliana exposed to salt stress.
    Asensi-Fabado MA; Cela J; Müller M; Arrom L; Chang C; Munné-Bosch S
    J Plant Physiol; 2012 Mar; 169(4):360-8. PubMed ID: 22209220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice.
    Kant S; Bi YM; Zhu T; Rothstein SJ
    Plant Physiol; 2009 Oct; 151(2):691-701. PubMed ID: 19700562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of genes associated with auxin, ethylene and ABA pathways by 2,4-dichlorophenoxyacetic acid in Arabidopsis.
    Raghavan C; Ong EK; Dalling MJ; Stevenson TW
    Funct Integr Genomics; 2006 Jan; 6(1):60-70. PubMed ID: 16317577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of chlorophyll biosynthesis-related genes on the leaf color in Hosta (Hosta plantaginea Aschers) and tobacco (Nicotiana tabacum L.).
    Zhang J; Sui C; Liu H; Chen J; Han Z; Yan Q; Liu S; Liu H
    BMC Plant Biol; 2021 Jan; 21(1):45. PubMed ID: 33451287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lysophosphatidylcholine enhances susceptibility in signaling pathway against pathogen infection through biphasic production of reactive oxygen species and ethylene in tobacco plants.
    Wi SJ; Seo Sy; Cho K; Nam MH; Park KY
    Phytochemistry; 2014 Aug; 104():48-59. PubMed ID: 24837357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethylene-responsive SbWRKY50 suppresses leaf senescence by inhibition of chlorophyll degradation in sorghum.
    Chen W; Zheng Y; Wang J; Wang Z; Yang Z; Chi X; Dai L; Lu G; Yang Y; Sun B
    New Phytol; 2023 May; 238(3):1129-1145. PubMed ID: 36683397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SAUR36, a small auxin up RNA gene, is involved in the promotion of leaf senescence in Arabidopsis.
    Hou K; Wu W; Gan SS
    Plant Physiol; 2013 Feb; 161(2):1002-9. PubMed ID: 23250625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome Analysis of Gene Expression Patterns Potentially Associated with Premature Senescence in
    Zhao Z; Li Y; Zhao S; Zhang J; Zhang H; Fu B; He F; Zhao M; Liu P
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30400189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The AP2/ERF transcription factor SlERF.F5 functions in leaf senescence in tomato.
    Chen Y; Feng P; Tang B; Hu Z; Xie Q; Zhou S; Chen G
    Plant Cell Rep; 2022 May; 41(5):1181-1195. PubMed ID: 35238951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.