BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35803141)

  • 21. Systematic investigation of drip stains on apparel fabrics: The effects of prior-laundering, fibre content and fabric structure on final stain appearance.
    de Castro TC; Taylor MC; Kieser JA; Carr DJ; Duncan W
    Forensic Sci Int; 2015 May; 250():98-109. PubMed ID: 25828382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study of Aramid Yarns Sizing.
    Krstović K; Kovačević S; Schwarz I; Brnada S
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 4D synchrotron microtomography and pore-network modelling for direct in situ capillary flow visualization in 3D printed microfluidic channels.
    Piovesan A; Van De Looverbosch T; Verboven P; Achille C; Parra Cabrera C; Boller E; Cheng Y; Ameloot R; Nicolai B
    Lab Chip; 2020 Jun; 20(13):2403-2411. PubMed ID: 32514512
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigating the effect of different filaments and yarn structures on mechanical and physical properties of dual-core elastane composite yarns.
    Irfan M; Qadir MB; Afzal A; Shaker K; Salman SM; Majeed N; Indrie L; Albu A
    Heliyon; 2023 Sep; 9(9):e20007. PubMed ID: 37809450
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact Spatter Bloodstain Patterns on Textiles.
    Wu J; Michielsen S; Baby R
    J Forensic Sci; 2019 May; 64(3):702-710. PubMed ID: 30380144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Yarn-Level Simulation of Hygroscopicity of Woven Textiles.
    Mao A; Dong W; Xie C; Wang H; Liu YJ; Li G; He Y
    IEEE Trans Vis Comput Graph; 2023 Dec; 29(12):5250-5264. PubMed ID: 36103450
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flexible Temperature Sensor Integration into E-Textiles Using Different Industrial Yarn Fabrication Processes.
    Lugoda P; Costa JC; Oliveira C; Garcia-Garcia LA; Wickramasinghe SD; Pouryazdan A; Roggen D; Dias T; Münzenrieder N
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heat as a Conductivity Factor of Electrically Conductive Yarns Woven into Fabric.
    Penava Ž; Penava DŠ; Knezić Ž
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Weaving Off-The-Shelf Yarns into Textile Micro Total Analysis Systems (μTAS).
    Öberg Månsson I; Piper A; Hamedi MM
    Macromol Biosci; 2020 Nov; 20(11):e2000150. PubMed ID: 32686256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Yarn-Level Cloth Simulation with Sliding Persistent Contacts.
    Cirio G; Lopez-Moreno J; Otaduy MA
    IEEE Trans Vis Comput Graph; 2017 Feb; 23(2):1152-1162. PubMed ID: 27448364
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of the automated software and device for determination of wicking in textiles using open-source tools.
    Milanovic PM; Stankovic SB; Novakovic M; Grujic D; Kostic M; Milanovic JZ
    PLoS One; 2020; 15(11):e0241665. PubMed ID: 33196645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Continuous, Spontaneous, and Directional Water Transport in the Trilayered Fibrous Membranes for Functional Moisture Wicking Textiles.
    Miao D; Huang Z; Wang X; Yu J; Ding B
    Small; 2018 Aug; 14(32):e1801527. PubMed ID: 30004631
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo remodeling of human cell-assembled extracellular matrix yarns.
    Magnan L; Kawecki F; Labrunie G; Gluais M; Izotte J; Marais S; Foulc MP; Lafourcade M; L'Heureux N
    Biomaterials; 2021 Jun; 273():120815. PubMed ID: 33894404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wash Testing of Electronic Yarn.
    Hardy DA; Rahemtulla Z; Satharasinghe A; Shahidi A; Oliveira C; Anastasopoulos I; Nashed MN; Kgatuke M; Komolafe A; Torah R; Tudor J; Hughes-Riley T; Beeby S; Dias T
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32182823
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigating bloodstain dynamics at impact on the technical rear of fabric.
    Dicken L; Knock C; Carr DJ; Beckett S
    Forensic Sci Int; 2019 Aug; 301():142-148. PubMed ID: 31153991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wicking-Polarization-Induced Water Cluster Size Effect on Triboelectric Evaporation Textiles.
    Gong W; Wang X; Yang W; Zhou J; Han X; Dickey MD; Su Y; Hou C; Li Y; Zhang Q; Wang H
    Adv Mater; 2021 Apr; 33(15):e2007352. PubMed ID: 33660354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact dynamics of porcine drip bloodstains on fabrics.
    Williams EM; Dodds M; Taylor MC; Li J; Michielsen S
    Forensic Sci Int; 2016 May; 262():66-72. PubMed ID: 26970869
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Weaving Structures on the Water Wicking-Evaporating Behavior of Woven Fabrics.
    Lei M; Li Y; Liu Y; Ma Y; Cheng L; Hu Y
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32059351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterizing the transplanar and in-plane water transport of textiles with gravimetric and image analysis technique: Spontaneous Uptake Water Transport Tester.
    Tang KP; Wu YS; Chau KH; Kan CW; Fan JT
    Sci Rep; 2015 Apr; 5():9689. PubMed ID: 25875329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.