BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35803141)

  • 41. Effect of Weaving Structures on the Water Wicking-Evaporating Behavior of Woven Fabrics.
    Lei M; Li Y; Liu Y; Ma Y; Cheng L; Hu Y
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32059351
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterizing the transplanar and in-plane water transport of textiles with gravimetric and image analysis technique: Spontaneous Uptake Water Transport Tester.
    Tang KP; Wu YS; Chau KH; Kan CW; Fan JT
    Sci Rep; 2015 Apr; 5():9689. PubMed ID: 25875329
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Superwicking on Nanoporous Micropillared Surfaces.
    Zheng D; Choi CH; Sun G; Zhao X
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30925-30931. PubMed ID: 32525647
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polyurethane/Cotton/Carbon Nanotubes Core-Spun Yarn as High Reliability Stretchable Strain Sensor for Human Motion Detection.
    Wang Z; Huang Y; Sun J; Huang Y; Hu H; Jiang R; Gai W; Li G; Zhi C
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24837-43. PubMed ID: 27558025
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Poro-elasto-capillary wicking of cellulose sponges.
    Ha J; Kim J; Jung Y; Yun G; Kim DN; Kim HY
    Sci Adv; 2018 Mar; 4(3):eaao7051. PubMed ID: 29682606
    [TBL] [Abstract][Full Text] [Related]  

  • 46. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles.
    Huang Y; Hu H; Huang Y; Zhu M; Meng W; Liu C; Pei Z; Hao C; Wang Z; Zhi C
    ACS Nano; 2015 May; 9(5):4766-75. PubMed ID: 25842997
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Key factors limiting carbon nanotube yarn strength: exploring processing-structure-property relationships.
    Beese AM; Wei X; Sarkar S; Ramachandramoorthy R; Roenbeck MR; Moravsky A; Ford M; Yavari F; Keane DT; Loutfy RO; Nguyen ST; Espinosa HD
    ACS Nano; 2014 Nov; 8(11):11454-66. PubMed ID: 25353651
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabricated tropoelastin-silk yarns and woven textiles for diverse tissue engineering applications.
    Aghaei-Ghareh-Bolagh B; Mithieux SM; Hiob MA; Wang Y; Chong A; Weiss AS
    Acta Biomater; 2019 Jun; 91():112-122. PubMed ID: 31004842
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biomimetic Fibrous Murray Membranes with Ultrafast Water Transport and Evaporation for Smart Moisture-Wicking Fabrics.
    Wang X; Huang Z; Miao D; Zhao J; Yu J; Ding B
    ACS Nano; 2019 Feb; 13(2):1060-1070. PubMed ID: 30561986
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Continuous and scalable manufacture of amphibious energy yarns and textiles.
    Gong W; Hou C; Zhou J; Guo Y; Zhang W; Li Y; Zhang Q; Wang H
    Nat Commun; 2019 Feb; 10(1):868. PubMed ID: 30787290
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simulation of Textile Stains.
    Zheng Y; Chen Y; Fei G; Dorsey J; Wu E
    IEEE Trans Vis Comput Graph; 2019 Jul; 25(7):2471-2481. PubMed ID: 29993746
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Piezo-Resistive Properties of Bio-Based Sensor Yarn Made with Sisal Fibre.
    Abed A; Samouh Z; Cochrane C; Boussu F; Cherkaoui O; El Moznine R; Vieillard J
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34198484
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Directional Water Wicking on a Metal Surface Patterned by Microchannels.
    Abbaspour N; Beltrame P; Néel MC; Schulz VP
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33498578
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of Capillary Flow in a Parallel Microchannel-Based Wick Structure with Circular and Noncircular Geometries.
    Ma B
    Langmuir; 2020 Nov; 36(45):13485-13497. PubMed ID: 33151083
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced Capillary Wicking through Hierarchically Porous Constructs Derived from Bijel Templates.
    Lee J; Mohraz A; Won Y
    Langmuir; 2022 Nov; 38(46):14063-14072. PubMed ID: 36342818
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced Knittability of Paper Yarn from the Swedish Forest by Using Textile Finishing Materials.
    Syrén F; Andersson Drugge G; Peterson J; Kadi N
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771184
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pore-scale effects during the transition from capillary- to viscosity-dominated flow dynamics within microfluidic porous-like domains.
    Yiotis A; Karadimitriou NK; Zarikos I; Steeb H
    Sci Rep; 2021 Feb; 11(1):3891. PubMed ID: 33594146
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 'Fab-chips': a versatile, fabric-based platform for low-cost, rapid and multiplexed diagnostics.
    Bhandari P; Narahari T; Dendukuri D
    Lab Chip; 2011 Aug; 11(15):2493-9. PubMed ID: 21735030
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Statistical model of pesticide penetration through woven work clothing fabrics.
    Lee S; Obendorf SK
    Arch Environ Contam Toxicol; 2005 Aug; 49(2):266-73. PubMed ID: 16059749
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Triboelectric Yarns with Electrospun Functional Polymer Coatings for Highly Durable and Washable Smart Textile Applications.
    Busolo T; Szewczyk PK; Nair M; Stachewicz U; Kar-Narayan S
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16876-16886. PubMed ID: 33783199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.