These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35803212)

  • 1. miRNA induced 3D bioprinted-heterotypic osteochondral interface.
    Celik N; Kim MH; Yeo M; Kamal F; Hayes DJ; Ozbolat IT
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35803212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aspiration-assisted bioprinting of the osteochondral interface.
    Ayan B; Wu Y; Karuppagounder V; Kamal F; Ozbolat IT
    Sci Rep; 2020 Aug; 10(1):13148. PubMed ID: 32753630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaffold-free bioprinted osteogenic and chondrogenic systems to model osteochondral physiology.
    Breathwaite EK; Weaver JR; Murchison AC; Treadwell ML; Odanga JJ; Lee JB
    Biomed Mater; 2019 Oct; 14(6):065010. PubMed ID: 31491773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. miRNA induced co-differentiation and cross-talk of adipose tissue-derived progenitor cells for 3D heterotypic pre-vascularized bone formation.
    Celik N; Kim MH; Hayes DJ; Ozbolat IT
    Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34479220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of multiphasic 3D-bioplotted scaffolds for site-specific chondrogenic and osteogenic differentiation of human adipose-derived stem cells for osteochondral tissue engineering applications.
    Mellor LF; Nordberg RC; Huebner P; Mohiti-Asli M; Taylor MA; Efird W; Oxford JT; Spang JT; Shirwaiker RA; Loboa EG
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2017-2030. PubMed ID: 31880408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aspiration-assisted bioprinting of co-cultured osteogenic spheroids for bone tissue engineering.
    Heo DN; Ayan B; Dey M; Banerjee D; Wee H; Lewis GS; Ozbolat IT
    Biofabrication; 2020 Dec; 13(1):. PubMed ID: 33059343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular Calcium Modulates Chondrogenic and Osteogenic Differentiation of Human Adipose-Derived Stem Cells: A Novel Approach for Osteochondral Tissue Engineering Using a Single Stem Cell Source.
    Mellor LF; Mohiti-Asli M; Williams J; Kannan A; Dent MR; Guilak F; Loboa EG
    Tissue Eng Part A; 2015 Sep; 21(17-18):2323-33. PubMed ID: 26035347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D bioprinting of tyramine modified hydrogels under visible light for osteochondral interface.
    Senturk E; Bilici C; Afghah F; Khan Z; Celik S; Wu C; Koc B
    Biofabrication; 2023 Jun; 15(3):. PubMed ID: 37201519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R
    Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composite Spheroid-Laden Bilayer Hydrogel for Engineering Three-Dimensional Osteochondral Tissue.
    Lee J; Lee E; Huh SJ; Kang JI; Park KM; Byun H; Lee S; Kim E; Shin H
    Tissue Eng Part A; 2024 Mar; 30(5-6):225-243. PubMed ID: 38062771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioprinting of Stem Cell Spheroids Followed by Post-Printing Chondrogenic Differentiation for Cartilage Tissue Engineering.
    Decarli MC; Seijas-Gamardo A; Morgan FLC; Wieringa P; Baker MB; Silva JVL; Moraes ÂM; Moroni L; Mota C
    Adv Healthc Mater; 2023 Jul; 12(19):e2203021. PubMed ID: 37057819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ formation of osteochondral interfaces through "bone-ink" printing in tailored microgel suspensions.
    Jalandhra GK; Molley TG; Hung TT; Roohani I; Kilian KA
    Acta Biomater; 2023 Jan; 156():75-87. PubMed ID: 36055612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directed Regeneration of Osteochondral Tissue by Hierarchical Assembly of Spatially Organized Composite Spheroids.
    Lee J; Lee S; Huh SJ; Kang BJ; Shin H
    Adv Sci (Weinh); 2022 Jan; 9(3):e2103525. PubMed ID: 34806336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D bioprinted hydrogel model incorporating β-tricalcium phosphate for calcified cartilage tissue engineering.
    Kosik-Kozioł A; Costantini M; Mróz A; Idaszek J; Heljak M; Jaroszewicz J; Kijeńska E; Szöke K; Frerker N; Barbetta A; Brinchmann JE; Święszkowski W
    Biofabrication; 2019 May; 11(3):035016. PubMed ID: 30943457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of osteochondral tissue constructs with chondrogenically and osteogenically predifferentiated mesenchymal stem cells encapsulated in bilayered hydrogels.
    Lam J; Lu S; Meretoja VV; Tabata Y; Mikos AG; Kasper FK
    Acta Biomater; 2014 Mar; 10(3):1112-23. PubMed ID: 24300948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bilayered constructs aimed at osteochondral strategies: the influence of medium supplements in the osteogenic and chondrogenic differentiation of amniotic fluid-derived stem cells.
    Rodrigues MT; Lee SJ; Gomes ME; Reis RL; Atala A; Yoo JJ
    Acta Biomater; 2012 Jul; 8(7):2795-806. PubMed ID: 22510402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Posttranscriptional Modification to Modulate Progenitor Differentiation on Heterotypic Spheroids.
    Celik N; Koduru SV; Ravnic DJ; Ozbolat IT; Hayes DJ
    Tissue Eng Part A; 2024 Jul; ():. PubMed ID: 38874518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D bioassembly of cell-instructive chondrogenic and osteogenic hydrogel microspheres containing allogeneic stem cells for hybrid biofabrication of osteochondral constructs.
    Cui X; Alcala-Orozco CR; Baer K; Li J; Murphy CA; Durham M; Lindberg G; Hooper GJ; Lim KS; Woodfield TBF
    Biofabrication; 2022 Apr; 14(3):. PubMed ID: 35344942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers.
    Daly AC; Kelly DJ
    Biomaterials; 2019 Mar; 197():194-206. PubMed ID: 30660995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of culture conditions on the bone regeneration potential of osteoblast-laden 3D bioprinted constructs.
    Raveendran N; Ivanovski S; Vaquette C
    Acta Biomater; 2023 Jan; 156():190-201. PubMed ID: 36155098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.