BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35803432)

  • 41. Synergistic effects of CO
    Kwon D; Jung S; Lin KA; Tsang YF; Park YK; Kwon EE
    J Hazard Mater; 2021 Oct; 419():126537. PubMed ID: 34323732
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermal decomposition behavior and kinetics for pyrolysis and catalytic pyrolysis of Douglas fir.
    Wang L; Lei H; Liu J; Bu Q
    RSC Adv; 2018 Jan; 8(4):2196-2202. PubMed ID: 35542584
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Catalytic pyrolysis of Chlorella vulgaris: Kinetic and thermodynamic analysis.
    Fong MJB; Loy ACM; Chin BLF; Lam MK; Yusup S; Jawad ZA
    Bioresour Technol; 2019 Oct; 289():121689. PubMed ID: 31252316
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermal Behavior of Mixed Plastics at Different Heating Rates: I. Pyrolysis Kinetics.
    Dubdub I; Al-Yaari M
    Polymers (Basel); 2021 Oct; 13(19):. PubMed ID: 34641228
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Catalytic co-pyrolysis of oil sludge and biomass over ZSM-5 for production of aromatic platform chemicals.
    Hou J; Zhong D; Liu W
    Chemosphere; 2022 Mar; 291(Pt 3):132912. PubMed ID: 34785179
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals.
    Saeaung K; Phusunti N; Phetwarotai W; Assabumrungrat S; Cheirsilp B
    Waste Manag; 2021 May; 127():101-111. PubMed ID: 33932851
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of pyrolysis index and reaction mechanism in microwave-assisted ex-situ catalytic co-pyrolysis of agro-residual and plastic wastes.
    Suriapparao DV; Gautam R; Rao Jeeru L
    Bioresour Technol; 2022 Aug; 357():127357. PubMed ID: 35605781
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetic studies on the pyrolysis of plastic waste using a combination of model-fitting and model-free methods.
    Yao Z; Yu S; Su W; Wu W; Tang J; Qi W
    Waste Manag Res; 2020 May; 38(1_suppl):77-85. PubMed ID: 31957598
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Catalytic flash pyrolysis for recovery of gasoline-range hydrocarbons from electric cable residue using a low-cost natural catalyst: An analytical Py-GC/MS study.
    Lopes VFD; Alves JLF; da Silva ER; Marques JAO; Melo DMA; Melo MAF; Braga RM
    Waste Manag; 2024 Jun; 186():188-197. PubMed ID: 38909442
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Economic assessment of a 40,000 t/y mixed plastic waste pyrolysis plant using direct heat treatment with molten metal: A case study of a plant located in Belgium.
    Riedewald F; Patel Y; Wilson E; Santos S; Sousa-Gallagher M
    Waste Manag; 2021 Feb; 120():698-707. PubMed ID: 33191052
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermal Behavior and Pyrolysis Kinetics of Mushroom Residue with the Introduction of Waste Plastics.
    Li J; Pu T; Wang Z; Liu T
    Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765678
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recovery, separation and production of fuel, plastic and aluminum from the Tetra PAK waste to hydrothermal and pyrolysis processes.
    Muñoz-Batista MJ; Blázquez G; Franco JF; Calero M; Martín-Lara MA
    Waste Manag; 2022 Jan; 137():179-189. PubMed ID: 34794036
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Catalytic fast co-pyrolysis of waste greenhouse plastic films and rice husk using hierarchical micro-mesoporous composite molecular sieve.
    Li Z; Zhong Z; Zhang B; Wang W; Seufitelli GVS; Resende FLP
    Waste Manag; 2020 Feb; 102():561-568. PubMed ID: 31770690
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thermo-catalytic co-pyrolysis of ironbark sawdust and plastic waste over strontium loaded hierarchical Y-zeolite.
    Dada TK; Islam MA; Vuppaladadiyam AK; Antunes E
    J Environ Manage; 2021 Dec; 299():113610. PubMed ID: 34474254
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kinetic Analysis for the Catalytic Pyrolysis of Wood Plastic Composite Over Al-MCM-41.
    Pyo SM; Kim YM; Jung JS; Yoo KS; Jung SC; Kim SC; Rhee GH; Park YK
    J Nanosci Nanotechnol; 2021 Jul; 21(7):3872-3876. PubMed ID: 33715708
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simultaneous production of high-valued carbon nanotubes and hydrogen from catalytic pyrolysis of waste plastics: The role of cellulose impurity.
    Liu Q; Peng B; Cai N; Su Y; Wang S; Wu P; Cao Q; Zhang H
    Waste Manag; 2024 Feb; 174():420-428. PubMed ID: 38104414
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-value products from ex-situ catalytic pyrolysis of polypropylene waste using iron-based catalysts: the influence of support materials.
    Cai N; Xia S; Li X; Xiao H; Chen X; Chen Y; Bartocci P; Chen H; Williams PT; Yang H
    Waste Manag; 2021 Dec; 136():47-56. PubMed ID: 34637978
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Co-pyrolysis of lignin and plastics using red clay as catalyst in a micro-pyrolyzer.
    Patil V; Adhikari S; Cross P
    Bioresour Technol; 2018 Dec; 270():311-319. PubMed ID: 30241064
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Catalytic fast co-pyrolysis of biomass and food waste to produce aromatics: Analytical Py-GC/MS study.
    Zhang B; Zhong Z; Min M; Ding K; Xie Q; Ruan R
    Bioresour Technol; 2015; 189():30-35. PubMed ID: 25864028
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Catalytic co-pyrolysis of cellulose and polypropylene over all-silica mesoporous catalyst MCM-41 and Al-MCM-41.
    Chi Y; Xue J; Zhuo J; Zhang D; Liu M; Yao Q
    Sci Total Environ; 2018 Aug; 633():1105-1113. PubMed ID: 29758862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.