BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35803446)

  • 1. Framework to improve biohydrogen generation with estrogen co-metabolism under complete suppression of nitrogen source.
    Syed Z; Sogani M; Sharma G; Sonu K; Rajvanshi J; Gupta NS
    Bioresour Technol; 2022 Sep; 360():127595. PubMed ID: 35803446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic evaluation of the exoelectrogenic activity of Rhodopseudomonas palustris under different nitrogen regimes.
    Pankan AO; Yunus K; Fisher AC
    Bioresour Technol; 2020 Mar; 300():122637. PubMed ID: 31891855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The purification of crude glycerol derived from biodiesel manufacture and its use as a substrate by Rhodopseudomonas palustris to produce hydrogen.
    Pott RW; Howe CJ; Dennis JS
    Bioresour Technol; 2014; 152():464-70. PubMed ID: 24326037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmenting the biodegradation of recalcitrant ethinylestradiol using Rhodopseudomonas palustris in a hybrid photo-assisted microbial fuel cell with enhanced bio-hydrogen production.
    Sogani M; Pankan AO; Dongre A; Yunus K; Fisher AC
    J Hazard Mater; 2021 Apr; 408():124421. PubMed ID: 33199150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotransformation of water lettuce (Pistia stratiotes) to biohydrogen by Rhodopseudomonas palustris.
    Corneli E; Adessi A; Olguín EJ; Ragaglini G; García-López DA; De Philippis R
    J Appl Microbiol; 2017 Dec; 123(6):1438-1446. PubMed ID: 28972701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photofermentation of crude glycerol from biodiesel using Rhodopseudomonas palustris: comparison with organic acids and the identification of inhibitory compounds.
    Pott RW; Howe CJ; Dennis JS
    Bioresour Technol; 2013 Feb; 130():725-30. PubMed ID: 23334033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biohydrogen production from CO-rich syngas via a locally isolated Rhodopseudomonas palustris PT.
    Pakpour F; Najafpour G; Tabatabaei M; Tohidfar M; Younesi H
    Bioprocess Biosyst Eng; 2014 May; 37(5):923-30. PubMed ID: 24078148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intensification of Hydrogen Production by a Co-culture of Syntrophomonas wolfei and Rhodopseudomonas palustris Employing High Concentrations of Butyrate as a Substrate.
    Lozano DA; Niño-Navarro C; Chairez I; Salgado-Manjarrez E; García-Peña EI
    Appl Biochem Biotechnol; 2023 Mar; 195(3):1800-1822. PubMed ID: 36399303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Thermosiphon Photobioreactor for Photofermentative Hydrogen Production by
    Bosman CE; McClelland Pott RW; Bradshaw SM
    Bioengineering (Basel); 2022 Jul; 9(8):. PubMed ID: 35892758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phototrophic Lactate Utilization by
    Govindaraju A; McKinlay JB; LaSarre B
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30902855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of hydrogen gas from light and the inorganic electron donor thiosulfate by Rhodopseudomonas palustris.
    Huang JJ; Heiniger EK; McKinlay JB; Harwood CS
    Appl Environ Microbiol; 2010 Dec; 76(23):7717-22. PubMed ID: 20889777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-growing Rhodopseudomonas palustris increases the hydrogen gas yield from acetate by shifting from the glyoxylate shunt to the tricarboxylic acid cycle.
    McKinlay JB; Oda Y; Rühl M; Posto AL; Sauer U; Harwood CS
    J Biol Chem; 2014 Jan; 289(4):1960-70. PubMed ID: 24302724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic Responses of the Interactions between Clostridium cellulovorans 743B and Rhodopseudomonas palustris CGA009 in a Cellulose-Grown Coculture for Enhanced Hydrogen Production.
    Lu H; Chen J; Jia Y; Cai M; Lee PKH
    Appl Environ Microbiol; 2016 Aug; 82(15):4546-4559. PubMed ID: 27208134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Hydrogen photoproduction from acetate by Rhodopseudomonas palustris].
    Yang SP; Zhao CG; Liu RT; Qu YB; Qian XM
    Sheng Wu Gong Cheng Xue Bao; 2002 Jul; 18(4):486-91. PubMed ID: 12385249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calvin cycle flux, pathway constraints, and substrate oxidation state together determine the H2 biofuel yield in photoheterotrophic bacteria.
    McKinlay JB; Harwood CS
    mBio; 2011; 2(2):. PubMed ID: 21427286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring Biohydrogen Production and Metabolic Heat in Biofilms by Fiber Bragg Grating Sensors.
    Chen M; Xin X; Liu H; Wu Y; Zhong N; Chang H
    Anal Chem; 2019 Jun; 91(12):7842-7849. PubMed ID: 31121095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of Biohydrogen and/or Poly-β-hydroxybutyrate by Rhodopseudomonas sp. Using Various Carbon Sources as Substrate.
    Touloupakis E; Poloniataki EG; Ghanotakis DF; Carlozzi P
    Appl Biochem Biotechnol; 2021 Jan; 193(1):307-318. PubMed ID: 32954484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. System-level analysis of metabolic trade-offs during anaerobic photoheterotrophic growth in Rhodopseudomonas palustris.
    Navid A; Jiao Y; Wong SE; Pett-Ridge J
    BMC Bioinformatics; 2019 May; 20(1):233. PubMed ID: 31072303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of ammonium on hydrogen evolution and nitrogen fixation in Rhodopseudomonas palustris].
    Gogotov IN; Mitkina TV; Glinskiĭ VP
    Mikrobiologiia; 1974; 43(4):586-91. PubMed ID: 4453204
    [No Abstract]   [Full Text] [Related]  

  • 20. An Escherichia coli Nitrogen Starvation Response Is Important for Mutualistic Coexistence with Rhodopseudomonas palustris.
    McCully AL; Behringer MG; Gliessman JR; Pilipenko EV; Mazny JL; Lynch M; Drummond DA; McKinlay JB
    Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29728387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.