These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 3580367)

  • 1. Electrophysiology of phagocytic membranes: intracellular K+ activity and K+ equilibrium potential in macrophage polykaryons.
    Persechini PM; Oliveira-Castro GM
    Biochim Biophys Acta; 1987 May; 899(2):213-21. PubMed ID: 3580367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiology of phagocytic membranes. Role of divalent cations in membrane hyperpolarizations of macrophage polykaryons.
    Araujo EG; Persechini PM; Oliveira-Castro GM
    Biochim Biophys Acta; 1986 Apr; 856(2):362-72. PubMed ID: 3955048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depolarization of macrophage polykaryons in the absence of external sodium induces a cyclic stimulation of a calcium-activated potassium conductance.
    Soldati L; Persechini PM
    Biochim Biophys Acta; 1988 Dec; 972(3):283-92. PubMed ID: 3196762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiology of phagocytic membranes: induction of slow membrane hyperpolarizations in macrophages and macrophage polykaryons by intracellular calcium injection.
    Persechini PM; Araujo EG; Oliveira-Castro GM
    J Membr Biol; 1981; 61(2):81-90. PubMed ID: 7024552
    [No Abstract]   [Full Text] [Related]  

  • 5. The effect of extracellular potassium on the intracellular potassium ion activity and transmembrane potentials of beating canine cardiac Purkinje fibers.
    Miura DS; Hoffman BF; Rosen MR
    J Gen Physiol; 1977 Apr; 69(4):463-74. PubMed ID: 853287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca2+-sensitive K+ channels in phagocytic cell membranes.
    Oliveira-Castro GM
    Cell Calcium; 1983 Dec; 4(5-6):475-92. PubMed ID: 6323009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiology of phagocytic membranes. I. Potassium-dependent slow membrane hyperpolarizations in mice macrophages.
    Dos Reis GA; Oliveira-Castro GM
    Biochim Biophys Acta; 1977 Sep; 469(3):257-63. PubMed ID: 561618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demonstration of an electrogenic Na+-K+ pump in mouse spleen macrophages.
    Gallin EK; Livengood DR
    Am J Physiol; 1983 Sep; 245(3):C184-8. PubMed ID: 6311022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of temperature on transmembrane potential of mouse liver cells.
    Wondergem R; Castillo LB
    Am J Physiol; 1986 Oct; 251(4 Pt 1):C603-13. PubMed ID: 2429557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring membrane potentials in Ehrlich ascites tumor cells by means of a fluorescent dye.
    Laris PC; Pershadsingh HA; Johnstone RM
    Biochim Biophys Acta; 1976 Jun; 436(2):475-88. PubMed ID: 1276225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dependence of motoneurone membrane potential on extracellular ion concentrations studied in isolated rat spinal cord.
    Forsythe ID; Redman SJ
    J Physiol; 1988 Oct; 404():83-99. PubMed ID: 2855355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular potassium activity in epithelial cells of frog fundic gastric mucosa.
    Schettino T; Curci S
    Pflugers Arch; 1980 Jan; 383(2):99-103. PubMed ID: 6966792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiology of phagocytic membranes. III. Evidence for a calcium-dependent potassium permeability change during slow hyperpolarizations of activated macrophages.
    Oliveira-Castro GM; Dos Reis GA
    Biochim Biophys Acta; 1981 Jan; 640(2):500-11. PubMed ID: 6783141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous and induced membrane hyperpolarizations in macrophages.
    Gallin EK; Wiederhold ML; Lipsky PE; Rosenthal AS
    J Cell Physiol; 1975 Dec; 86 Suppl 2(3 Pt 2):653-61. PubMed ID: 811677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose-induced oscillatory changes in extracellular ionized potassium concentration in mouse islets of Langerhans.
    Perez-Armendariz E; Atwater I; Rojas E
    Biophys J; 1985 Nov; 48(5):741-9. PubMed ID: 3907727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic mechanisms of a two-component cholinergic inhibition in Aplysia neurones.
    Kehoe J
    J Physiol; 1972 Aug; 225(1):85-114. PubMed ID: 4679686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic permeability of K, Na, and Cl in potassium-depolarized nerve. Dependency on pH, cooperative effects, and action of tetrodotoxin.
    Strickholm A
    Biophys J; 1981 Sep; 35(3):677-97. PubMed ID: 7272457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular ion activities and equilibrium potentials in motoneurones and glia cells of the frog spinal cord.
    Bührle CP; Sonnhof U
    Pflugers Arch; 1983 Feb; 396(2):144-53. PubMed ID: 6601260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmembrane potential of J774.2 mouse macrophage cells measured by microelectrode and ion distribution methods.
    McCaig DJ; Berlin RD
    Experientia; 1983 Aug; 39(8):906-7. PubMed ID: 6873247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The electrogenic effects of Na(+)-K(+)-ATPase in rat auditory thalamus.
    Senatorov VV; Mooney D; Hu B
    J Physiol; 1997 Jul; 502 ( Pt 2)(Pt 2):375-85. PubMed ID: 9263917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.